21 research outputs found

    A brain-sparing diphtheria toxin for chemical genetic ablation of peripheral cell lineages.

    Get PDF
    Conditional expression of diphtheria toxin receptor (DTR) is widely used for tissue-specific ablation of cells. However, diphtheria toxin (DT) crosses the blood-brain barrier, which limits its utility for ablating peripheral cells using Cre drivers that are also expressed in the central nervous system (CNS). Here we report the development of a brain-sparing DT, termed BRAINSPAReDT, for tissue-specific genetic ablation of cells outside the CNS. We prevent blood-brain barrier passage of DT through PEGylation, which polarizes the molecule and increases its size. We validate BRAINSPAReDT with regional genetic sympathectomy: BRAINSPAReDT ablates peripheral but not central catecholaminergic neurons, thus avoiding the Parkinson-like phenotype associated with full dopaminergic depletion. Regional sympathectomy compromises adipose tissue thermogenesis, and renders mice susceptible to obesity. We provide a proof of principle that BRAINSPAReDT can be used for Cre/DTR tissue-specific ablation outside the brain using CNS drivers, while consolidating the link between adiposity and the sympathetic nervous system

    Macrophages in obesity

    No full text
    Obesity is a worldwide public health concern yet no safe therapies are currently available. The activity of sympathetic neurons is necessary and sufficient for fat mass reduction, via norepinephrine (NE) signaling. Macrophage accumulation in the adipose tissue is thought to play the central role in the onset of obesity, yet their relation to NE has been controversial. We have identified a population of sympathetic neuron-associated macrophages (SAMs) that control obesity via the uptake and clearing of NE. Here we focus on the neuro-immune regulation of obesity by discussing the genetic, cellular and functional signatures of SAMs vis-a-vis adipose tissue macrophages (ATMs)

    Macrophages in obesity

    No full text
    Obesity is a worldwide public health concern yet no safe therapies are currently available. The activity of sympathetic neurons is necessary and sufficient for fat mass reduction, via norepinephrine (NE) signaling. Macrophage accumulation in the adipose tissue is thought to play the central role in the onset of obesity, yet their relation to NE has been controversial. We have identified a population of sympathetic neuron-associated macrophages (SAMs) that control obesity via the uptake and clearing of NE. Here we focus on the neuro-immune regulation of obesity by discussing the genetic, cellular and functional signatures of SAMs vis-a-vis adipose tissue macrophages (ATMs)

    Corrigendum: A brain-sparing diphtheria toxin for chemical genetic ablation of peripheral cell lineages.

    No full text
    The financial support for this Article was not fully acknowledged. The Acknowledgements should have included the following: [***Human Frontiers Science Program (HFSP) funds the labs of A.I.D. and P.C. ***]

    Sympathetic neuro-adipose connections mediate leptin-driven lipolysis

    No full text
    Leptin is a hormone produced by the adipose tissue that acts in the brain, stimulating white fat breakdown. We find that the lipolytic effect of leptin is mediated through the action of sympathetic nerve fibers that innervate the adipose tissue. Using intravital two-photon microscopy, we observe that sympathetic nerve fibers establish neuro-adipose junctions, directly “enveloping” adipocytes. Local optogenetic stimulation of sympathetic inputs induces a local lipolytic response and depletion of white adipose mass. Conversely, genetic ablation of sympathetic inputs onto fat pads blocks leptin-stimulated phosphorylation of hormone-sensitive lipase and consequent lipolysis, as do knockouts of dopamine β-hydroxylase, an enzyme required for catecholamine synthesis. Thus, neuro-adipose junctions are necessary and sufficient for the induction of lipolysis in white adipose tissue and are an efferent effector of leptin action. Direct activation of sympathetic inputs to adipose tissues may represent an alternative approach to induce fat loss, circumventing central leptin resistance. </p

    Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine

    No full text
    The cellular mechanism(s) linking macrophages to norepinephrine (NE)-mediated regulation of thermogenesis have been a topic of debate. Here we identify sympathetic neuron-associated macrophages (SAMs) as a population of cells that mediate clearance of NE via expression of solute carrier family 6 member 2 (SLC6A2), an NE transporter, and monoamine oxidase A (MAOA), a degradation enzyme. Optogenetic activation of the sympathetic nervous system (SNS) upregulates NE uptake by SAMs and shifts the SAM profile to a more proinflammatory state. NE uptake by SAMs is prevented by genetic deletion of Slc6a2 or inhibition of the encoded transporter. We also observed an increased proportion of SAMs in the SNS of two mouse models of obesity. Genetic ablation of Slc6a2 in SAMs increases brown adipose tissue (BAT) content, causes browning of white fat, increases thermogenesis, and leads to substantial and sustained weight loss in obese mice. We further show that this pathway is conserved, as human sympathetic ganglia also contain SAMs expressing the analogous molecular machinery for NE clearance, which thus constitutes a potential target for obesity treatment

    Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine

    No full text
    The cellular mechanism(s) linking macrophages to norepinephrine (NE)-mediated regulation of thermogenesis have been a topic of debate. Here we identify sympathetic neuron-associated macrophages (SAMs) as a population of cells that mediate clearance of NE via expression of solute carrier family 6 member 2 (SLC6A2), an NE transporter, and monoamine oxidase A (MAOA), a degradation enzyme. Optogenetic activation of the sympathetic nervous system (SNS) upregulates NE uptake by SAMs and shifts the SAM profile to a more proinflammatory state. NE uptake by SAMs is prevented by genetic deletion of Slc6a2 or inhibition of the encoded transporter. We also observed an increased proportion of SAMs in the SNS of two mouse models of obesity. Genetic ablation of Slc6a2 in SAMs increases brown adipose tissue (BAT) content, causes browning of white fat, increases thermogenesis, and leads to substantial and sustained weight loss in obese mice. We further show that this pathway is conserved, as human sympathetic ganglia also contain SAMs expressing the analogous molecular machinery for NE clearance, which thus constitutes a potential target for obesity treatment
    corecore