14 research outputs found

    Opti-Acoustic Stereo Imaging, System Calibration and 3-D Reconstruction

    No full text
    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of so-called range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm

    Optiacoustic stereo imaging: On system calibration and 3-D target reconstruction,” in review

    No full text
    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of so-called range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm. 1

    Decoding the language of human movement

    No full text

    Wearable Computing to Support Activities of Daily Living

    No full text

    View-invariant Pose Analysis for Human Movement Assessment from RGB Data

    No full text
    International audienceWe propose a CNN regression method to generate high-level, view-invariant features from RGB images which are suitable for human pose estimation and movement quality analysis. The inputs to our network are body joint heatmaps and limb-maps to help our network exploit geometric relationships between different body parts to estimate the features more accurately. A new multiview and multimodal human movement dataset is also introduced to evaluate the results of the proposed method. We present comparative experimental results on pose estimation using a manifold-based pose representation built from motion-captured data. We show that the new RGB derived features provide pose estimates of similar or better accuracy than those produced from depth data, even from single views only
    corecore