61 research outputs found

    Variation in Specificity of HIV Rapid Diagnostic Tests over Place and Time: An Analysis of Discordancy Data Using a Bayesian Approach

    Get PDF
    BACKGROUND Recent trends to earlier access to anti-retroviral treatment underline the importance of accurate HIV diagnosis. The WHO HIV testing strategy recommends the use of two or three rapid diagnostic tests (RDTs) combined in an algorithm and assume a population is serologically stable over time. Yet RDTs are prone to cross reactivity which can lead to false positive or discordant results. This paper uses discordancy data from MĂ©decins Sans FrontiĂšres (MSF) programmes to test the hypothesis that the specificity of RDTs change over place and time. METHODS Data was drawn from all MSF test centres in 2007-8 using a parallel testing algorithm. A Bayesian approach was used to derive estimates of disease prevalence, and of test sensitivity and specificity using the software WinBUGS. A comparison of models with different levels of complexity was performed to assess the evidence for changes in test characteristics by location and over time. RESULTS 106, 035 individuals were included from 51 centres in 10 countries using 7 different RDTs. Discordancy patterns were found to vary by location and time. Model fit statistics confirmed this, with improved fit to the data when test specificity and sensitivity were allowed to vary by centre and over time. Two examples show evidence of variation in specificity between different testing locations within a single country. Finally, within a single test centre, variation in specificity was seen over time with one test becoming more specific and the other less specific. CONCLUSION This analysis demonstrates the variable specificity of multiple HIV RDTs over geographic location and time. This variability suggests that cross reactivity is occurring and indicates a higher than previously appreciated risk of false positive HIV results using the current WHO testing guidelines. Given the significant consequences of false HIV diagnosis, we suggest that current testing and evaluation strategies be reviewed.The authors have no funding or support to report

    Accounting for False Positive HIV Tests: Is Visceral Leishmaniasis Responsible?

    Get PDF
    BACKGROUND: Co-infection with HIV and visceral leishmaniasis is an important consideration in treatment of either disease in endemic areas. Diagnosis of HIV in resource-limited settings relies on rapid diagnostic tests used together in an algorithm. A limitation of the HIV diagnostic algorithm is that it is vulnerable to falsely positive reactions due to cross reactivity. It has been postulated that visceral leishmaniasis (VL) infection can increase this risk of false positive HIV results. This cross sectional study compared the risk of false positive HIV results in VL patients with non-VL individuals. METHODOLOGY/PRINCIPAL FINDINGS: Participants were recruited from 2 sites in Ethiopia. The Ethiopian algorithm of a tiebreaker using 3 rapid diagnostic tests (RDTs) was used to test for HIV. The gold standard test was the Western Blot, with indeterminate results resolved by PCR testing. Every RDT screen positive individual was included for testing with the gold standard along with 10% of all negatives. The final analysis included 89 VL and 405 non-VL patients. HIV prevalence was found to be 12.8% (47/ 367) in the VL group compared to 7.9% (200/2526) in the non-VL group. The RDT algorithm in the VL group yielded 47 positives, 4 false positives, and 38 negatives. The same algorithm for those without VL had 200 positives, 14 false positives, and 191 negatives. Specificity and positive predictive value for the group with VL was less than the non-VL group; however, the difference was not found to be significant (p = 0.52 and p = 0.76, respectively). CONCLUSION: The test algorithm yielded a high number of HIV false positive results. However, we were unable to demonstrate a significant difference between groups with and without VL disease. This suggests that the presence of endemic visceral leishmaniasis alone cannot account for the high number of false positive HIV results in our study

    Dilution testing using rapid diagnostic tests in a HIV diagnostic algorithm: a novel alternative for confirmation testing in resource limited settings.

    Get PDF
    BACKGROUND: Current WHO testing guidelines for resource limited settings diagnose HIV on the basis of screening tests without a confirmation test due to cost constraints. This leads to a potential risk of false positive HIV diagnosis. In this paper, we evaluate the dilution test, a novel method for confirmation testing, which is simple, rapid, and low cost. The principle of the dilution test is to alter the sensitivity of a rapid diagnostic test (RDT) by dilution of the sample, in order to screen out the cross reacting antibodies responsible for falsely positive RDT results. METHODS: Participants were recruited from two testing centres in Ethiopia where a tiebreaker algorithm using 3 different RDTs in series is used to diagnose HIV. All samples positive on the initial screening RDT and every 10th negative sample underwent testing with the gold standard and dilution test. Dilution testing was performed using Determineℱ rapid diagnostic test at 6 different dilutions. Results were compared to the gold standard of Western Blot; where Western Blot was indeterminate, PCR testing determined the final result. RESULTS: 2895 samples were recruited to the study. 247 were positive for a prevalence of 8.5 % (247/2895). A total of 495 samples underwent dilution testing. The RDT diagnostic algorithm misclassified 18 samples as positive. Dilution at the level of 1/160 was able to correctly identify all these 18 false positives, but at a cost of a single false negative result (sensitivity 99.6 %, 95 % CI 97.8-100; specificity 100 %, 95 % CI: 98.5-100). Concordance between the gold standard and the 1/160 dilution strength was 99.8 %. CONCLUSION: This study provides proof of concept for a new, low cost method of confirming HIV diagnosis in resource-limited settings. It has potential for use as a supplementary test in a confirmatory algorithm, whereby double positive RDT results undergo dilution testing, with positive results confirming HIV infection. Negative results require nucleic acid testing to rule out false negative results due to seroconversion or misclassification by the lower sensitivity dilution test. Further research is needed to determine if these results can be replicated in other settings. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01716299

    Markers of sulfadoxine-pyrimethamine resistance in Eastern Democratic Republic of Congo; implications for malaria chemoprevention.

    Get PDF
    BACKGROUND: Sulfadoxine-pyrimethamine (SP) is a cornerstone of malaria chemoprophylaxis and is considered for programmes in the Democratic Republic of Congo (DRC). However, SP efficacy is threatened by drug resistance, that is conferred by mutations in the dhfr and dhps genes. The World Health Organization has specified that intermittent preventive treatment for infants (IPTi) with SP should be implemented only if the prevalence of the dhps K540E mutation is under 50%. There are limited current data on the prevalence of resistance-conferring mutations available from Eastern DRC. The current study aimed to address this knowledge gap. METHODS: Dried blood-spot samples were collected from clinically suspected malaria patients [outpatient department (OPD)] and pregnant women attending antenatal care (ANC) in four sites in North and South Kivu, DRC. Quantitative PCR (qPCR) was performed on samples from individuals with positive and with negative rapid diagnostic test (RDT) results. Dhps K450E and A581G and dhfr I164L were assessed by nested PCR followed by allele-specific primer extension and detection by multiplex bead-based assays. RESULTS: Across populations, Plasmodium falciparum parasite prevalence was 47.9% (1160/2421) by RDT and 71.7 (1763/2421) by qPCR. Median parasite density measured by qPCR in RDT-negative qPCR-positive samples was very low with a median of 2.3 parasites/”L (IQR 0.5-25.2). Resistance genotyping was successfully performed in RDT-positive samples and RDT-negative/qPCR-positive samples with success rates of 86.2% (937/1086) and 55.5% (361/651), respectively. The presence of dhps K540E was high across sites (50.3-87.9%), with strong evidence for differences between sites (p < 0.001). Dhps A581G mutants were less prevalent (12.7-47.2%). The dhfr I164L mutation was found in one sample. CONCLUSIONS: The prevalence of the SP resistance marker dhps K540E exceeds 50% in all four study sites in North and South Kivu, DRC. K540E mutations regularly co-occurred with mutations in dhps A581G but not with the dhfr I164L mutation. The current results do not support implementation of IPTi with SP in the study area

    Elevated anti-Zta IgG levels and EBV viral load are associated with site of tumor presentation in endemic Burkitt's lymphoma patients: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endemic Burkitt's lymphoma (BL) is an extranodal tumor appearing predominantly in the jaw in younger children while abdominal tumors predominate with increasing age. Previous studies have identified elevated levels of antibodies to <it>Plasmodium falciparum </it>schizont extracts and Epstein-Barr virus (EBV) viral capsid antigens (VCA) in endemic BL relative to malaria exposed controls. However, these studies have neither determined if there were any differences based on the site of clinical presentation of the tumor nor examined a broader panel of EBV and <it>P. falciparum </it>antigens.</p> <p>Methods</p> <p>We used a suspension bead Luminex assay to measure the IgG levels against EBV antigens, VCA, EAd, EBNA-1 and Zta as well as <it>P. falciparum </it>MSP-1, LSA-1, and AMA-1 antigens in children with BL (n = 32) and in population-based age-and sex-matched controls (n = 25) from a malaria endemic region in Western Kenya with high incidence of BL. EBV viral load in plasma was determined by quantitative PCR.</p> <p>Results</p> <p>Relative to healthy controls, BL patients had significantly increased anti-Zta (<it>p </it>= 0.0017) and VCA IgG levels (<it>p </it>< 0.0001) and plasma EBV viral loads (<it>p </it>< 0.0001). In contrast, comparable IgG levels to all <it>P. falciparum </it>antigens tested were observed in BL patients compared to controls. Interestingly, when we grouped BL patients into those presenting with abdominal tumors or with jaw tumors, we observed significantly higher levels of anti-Zta IgG levels (<it>p </it>< 0.0065) and plasma EBV viral loads (<it>p </it>< 0.033) in patients with abdominal tumors compared to patients with jaw tumors.</p> <p>Conclusion</p> <p>Elevated antibodies to Zta and elevated plasma EBV viral load could be relevant biomarkers for BL and could also be used to confirm BL presenting in the abdominal region.</p

    Suppression of circulating IgD+CD27+ memory B cells in infants living in a malaria-endemic region of Kenya

    Get PDF
    Background: Plasmodium falciparum infection leads to alterations in B cell subset distribution. During infancy, development of peripheral B cell subsets is also occurring. However, it is unknown if infants living a malaria endemic region have alterations in B cell subsets that is independent of an age effect. Methods: To evaluate the impact of exposure to P. falciparum on B cell development in infants, flow cytometry was used to analyse the distribution and phenotypic characteristic of B cell subsets in infant cohorts prospectively followed at 12, 18 and 24 months from two geographically proximate regions in western Kenya with divergent malaria exposure i.e. Kisumu (malaria-endemic, n = 24) and Nandi (unstable malaria transmission, n = 21). Results: There was significantly higher frequency and absolute cell numbers of CD19+ B cells in Kisumu relative to Nandi at 12(p = 0.0440), 18(p = 0.0210) and 24 months (p = 0.0493). No differences were observed between the infants from the two sites in frequencies of naĂŻve B cells (IgD+CD27-) or classical memory B cells (IgD-CD27+). However, immature transitional B cells (CD19+CD10+CD34-) were higher in Kisumu relative to Nandi at all three ages. In contrast, the levels of non-class switched memory B cells (CD19+IgD+CD27+) were significantly lower overall in Kisumu relative to Nandi at significantly at 12 (p = 0.0144), 18 (p = 0.0013) and 24 months (p = 0.0129). Conclusions: These data suggest that infants living in malaria endemic regions have altered B cell subset distribution. Further studies are needed to understand the functional significance of these changes and long-term impact on ability of these infants to develop antibody responses to P. falciparum and heterologous infections
    • 

    corecore