6 research outputs found

    In vitro cytotoxicity of folate-silica-gold nanorods on mouse acute lymphoblastic leukemia and spermatogonial cells

    Get PDF
    Objective: The purpose of this study was to evaluate in vitro cytotoxicity of gold nanorods (GNRs) on the viability of spermatogonial cells (SSCs) and mouse acute lymphoblastic leukemia cells (EL4s). Materials and Methods: In this experimental study, SSCs were isolated from the neonate mice, following enzymatic digestion and differential plating. GNRs were synthesized, then modified by silica and finally conjugated with folic acid to form F-Si-GNRs. Different doses of F-Si-GNRs (25, 50, 75, 100, 125 and 140 μM) were used on SSCs and EL4s. MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) proliferation assay was performed to examine the GNRs toxicity. Flow cytometry was used to confirm the identity of the EL4s and SSCs. Also, the identity and functionality of SSCs were determined by the expression of specific spermatogonial genes and transplantation into recipient testes. Apoptosis was determined by flow cytometry using an annexin V/propidium iodide (PI) kit. Results: Flow cytometry showed that SSCs and EL4s were positive for Plzf and H-2kb, respectively. The viability percentage of SSCs and EL4s that were treated with 25, 50, 75, 100, 125 and 140 μM of F-Si-GNRs was 65.33 ± 3.51, 60 ± 3.6, 51.33 ± 3.51, 49 ± 3, 30.66 ± 2.08 and 16.33 ± 2.51 for SSCs and 57.66 ± 0.57, 54.66 ± 1.5, 39.66 ± 1.52, 12.33 ± 2.51, 10 ± 1 and 5.66 ± 1.15 for EL4s respectively. The results of the MTT assay indicated that 100 μM is the optimal dose to reach the highest and lowest level of cell death in EL4s and in SSCs, respectively. Conclusion: Cell death increased with increasing concentrations of F-Si-GNRs. Following utilization of F-Si-GNRs, there was a significant difference in the extent of apoptosis between cancer cells and SSCs. © 2019 Royan Institute (ACECR). All rights reserved

    Radio-sensitivity enhancement in HT29 cells through magnetic hyperthermia in combination with targeted nano-carrier of 5-Flourouracil

    No full text
    Normal tissue complication and development of radioresistance in cancer cells are known as the main challenges of ionizing radiation treatment. In the current study, we intended to induce selective radiosensitization in HT29 cancer cells by developing folic acid modified magnetic triblock copolymer nanoparticles as carrier of 5-Flourouracil (5-FU) which was further used in combination with hyperthermia. The aforementioned nanoparticles were synthesized and characterized by differential scanning calorimetric analysis (DSC), UV�visible spectroscopy, dynamic light scattering (DLS), zeta sizer, and transmission electron microscopy (TEM). These nanoparticles were also assessed to determine drug loading capacity (DLC ) and drug release profile. The cytotoxicity of nanoparticles was evaluated on two different cell lines: HUVEC and HT29. Furthermore, radiosensitivity induction of the nanoparticles with and without exposure of alternative magnetic field was investigated. MTT-based cytotoxicity assay demonstrated that the therapeutic ratio was enhanced in response to using 5-FU-loaded nanoparticles as compared to 5-FU. Various characterizations including gene expression study, measurement of reactive oxygen species (ROS) generation, Annexin V/PI staining, and clonogenic assay revealed that ionizing radiation in combination with hyperthermia in the presence of the synthesized nanoparticles led to maximal anti-cancer effects as compared to other single (P < 0.001) and combined treatments (P < 0.01). Our results suggested that combined treatment based on using folic acid modified magnetic copolymer nanoparticle as carrier of 5-FU accompanied with hyperthermia could be proposed as an efficient approach to enhance radiation effects in cancer cells. © 2021 Elsevier B.V

    Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method

    No full text
    The current chemotherapy method demonstrates the need for improvement in terms of efficacy and safety. Given the beneficiary effect of heat in combination with chemotherapy, the purpose of this study is to develop a multifunctional nanoplatform by co-incorporating gold nanoparticles (AuNPs) as photothermal agent and cisplatin as anticancer drug into alginate hydrogel (named as ACA) to enable concurrent thermo-chemotherapy. The in vitro cytotoxicity experiment showed that the as-developed nanocomplex was able to induce greater cytotoxicity in KB human nasopharyngeal cancer cells compared to free cisplatin at the same concentration. Moreover, the interaction of ACA and laser irradiation acted synergistically and resulted in higher cell death rate compared to separate application of photothermal therapy and chemotherapy. The micrograph of KB cells also revealed that ACA was able to selectively accumulate into the mitochondria, so that laser irradiation of KB cells pre-treated with ACA resulted in intensive morphological damages such as plasma membrane disruption, chromatin condensation, autophagic vacuoles formation and organelle degeneration. Moreover, the sign and magnitude of optical nonlinear refractive index measured by Z-scan technique was shown to be significantly altered in cells exposed to ACA with and without laser irradiation. Consequently, the nanocomplex developed herein could be a promising platform to combine photothermal therapy and chemotherapy effectively, thereby achieving synergistic therapeutic outcome. © 2019 Elsevier B.V

    Incorporation of SPION-casein core-shells into silk-fibroin nanofibers for cardiac tissue engineering

    No full text
    Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt) were synthesized and incorporated into silk-fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real-time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION-casein scaffolds including GATA-4, cardiac troponin T, Nkx 2.5, and alpha-myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core-shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self-renewal capacity. © 2019 Wiley Periodicals, Inc

    Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: Another emerging application of nanomedicine

    No full text
    Background: Currently available anti-influenza drugs are often associated with limitations such as toxicity and the appearance of drug-resistant strains. Therefore, there is a pressing need for the development of novel, safe and more efficient antiviral agents. In this study, we evaluated the antiviral activity of zinc oxide nanoparticles (ZnO-NPs) and PEGylated zinc oxide nanoparticles against H1N1 influenza virus. Methods: The nanoparticles were characterized using the inductively coupled plasma mass spectrometry, X-ray diffraction analysis, and electron microscopy. MTT assay was applied to assess the cytotoxicity of the nanoparticles, and anti-influenza activity was determined by TCID50 and quantitative Real-Time PCR assays. To study the inhibitory impact of nanoparticles on the expression of viral antigens, an indirect immunofluorescence assay was also performed. Results: Post-exposure of influenza virus with PEGylated ZnO-NPs and bare ZnO-NPs at the highest non-toxic concentrations could be led to 2.8 and 1.2 log10 TCID50 reduction in virus titer when compared to the virus control, respectively (P < 0.0001). At the highest non-toxic concentrations, the PEGylated and unPEGylated ZnO-NPs led to inhibition rates of 94.6 and 52.2, respectively, which were calculated based on the viral loads. There was a substantial decrease in fluorescence emission intensity in viral-infected cell treated with PEGylated ZnO-NPs compared to the positive control. Conclusions: Taken together, our study indicated that PEGylated ZnO-NPs could be a novel, effective, and promising antiviral agent against H1N1 influenza virus infection, and future studies can be designed to explore the exact antiviral mechanism of these nanoparticles. © 2019 The Author(s)
    corecore