9,288 research outputs found

    A Statistical Model to Explain the Mendel--Fisher Controversy

    Full text link
    In 1866 Gregor Mendel published a seminal paper containing the foundations of modern genetics. In 1936 Ronald Fisher published a statistical analysis of Mendel's data concluding that "the data of most, if not all, of the experiments have been falsified so as to agree closely with Mendel's expectations." The accusation gave rise to a controversy which has reached the present time. There are reasonable grounds to assume that a certain unconscious bias was systematically introduced in Mendel's experimentation. Based on this assumption, a probability model that fits Mendel's data and does not offend Fisher's analysis is given. This reconciliation model may well be the end of the Mendel--Fisher controversy.Comment: Published in at http://dx.doi.org/10.1214/10-STS342 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal diffusion in ecological dynamics with Allee effect in a metapopulation

    Full text link
    How diffusion impacts on ecological dynamics under the Allee effect and spatial constraints? That is the question we address. Employing a microscopic minimal model in a metapopulation (without imposing nonlinear birth and death rates) we evince --- both numerically and analitically --- the emergence of an optimal diffusion that maximises the survival probability. Even though, at first such result seems counter-intuitive, it has empirical support from recent experiments with engineered bacteria. Moreover, we show that this optimal diffusion disappears for loose spatial constraints.Comment: 16 pages; 6 figure

    Invisible Z decay width bounds on active-sterile neutrino mixing in the (3+1) and (3+2) models

    Full text link
    In this work we consider the standard model extended with singlet sterile neutrinos with mass in the eV range and mixed with the active neutrinos. The active-sterile neutrino mixing renders new contributions to the invisible Z decay width which, in the case of light sterile neutrinos, depends on the active-sterile mixing matrix elements only. We then use the current experimental value of the invisible Z decay width to obtain bounds on these mixing matrix elements for both (3+1) and (3+2) models.Comment: 10 pages, 5 figure

    Spinwave damping in the two-dimensional ferromagnetic XY model

    Get PDF
    The effect of damping of spinwaves in a two-dimensional classical ferromagnetic XY model is considered. The damping rate Γq\Gamma_{q} is calculated using the leading diagrams due to the quartic-order deviations from the harmonic spin Hamiltonian. The resulting four-dimensional integrals are evaluated by extending the techniques developed by Gilat and others for spectral density types of integrals. Γq\Gamma_{q} is included into the memory function formalism due to Reiter and Solander, and Menezes, to determine the dynamic structure function S(q,ω)S(q,\omega). For the infinite sized system, the memory function approach is found to give non-divergent spinwave peaks, and a smooth nonzero background intensity (``plateau'' or distributed intensity) for the whole range of frequencies below the spinwave peak. The background amplitude relative to the spinwave peak rises with temperature, and eventually becomes higher than the spinwave peak, where it appears as a central peak. For finite-sized systems, there are multiple sequences of weak peaks on both sides of the spinwave peaks whose number and positions depend on the system size and wavevector in integer units of 2π/L2\pi/L. These dynamical finite size effects are explained in the memory function analysis as due to either spinwave difference processes below the spinwave peak or sum processes above the spinwave peak. These features are also found in classical Monte Carlo -- Spin-Dynamics simulations.Comment: 20 two-column page

    Proper motions of ROSAT discovered isolated neutron stars measured with Chandra: First X-ray measurement of the large proper motion of RX J1308.6+2127/RBS 1223

    Full text link
    The unprecedented spatial resolution of the Chandra observatory opens the possibility to detect with relatively high accuracy proper motions at X-ray wavelengths. We have conducted an astrometric study of three of the "Magnificent Seven", the thermally emitting radio quiet isolated neutron stars (INSs) discovered by ROSAT. These three INSs (RX J0420.0-5022, RX J0806.4-4123 and RX J1308.6+2127/RBS 1223) either lack an optical counterpart or have one too faint to be used for astrometric purposes. We obtained ACIS observations 3 to 5 years apart to constrain or measure the displacement of the sources on the X-ray sky using as reference the background of extragalactic or remote galactic X-ray sources. Upper limits of 138 mas/yr and 76 mas/yr on the proper motion of RX J0420.0-5022 and RX J0806.4-4123, respectively, have already been presented in Motch et al. (2007). Here we report the very significant measurement (~ 10 sigma) of the proper motion of the third INS of our program, RX J1308.6+2127/RBS1223. Comparing observations obtained in 2002 and 2007 reveals a displacement of 1.1 arcsec implying a yearly proper motion of 223 mas, the second fastest measured for the ROSAT discovered INSs. The source is rapidly moving away from the galactic plane at a speed which precludes any significant accretion of matter from the interstellar medium. Its transverse velocity of ~ 740 (d/700pc) km/s might be the largest of the "Magnificent Seven" and among the fastest recorded for neutron stars. RX J1308.6+2127/RBS1223 is thus a young high velocity cooling neutron star. The source may have its origin in the closest part of the Scutum OB2 association about 0.8 Myr ago, an age consistent with that expected from cooling curves, but significantly younger than inferred from pulse timing measurements (1.5 Myr).Comment: 3 pages, 2 figures, proceedings of the conference "40 Years of Pulsars", 12-17 August 2007, Montreal, Canad
    • …
    corecore