122 research outputs found

    Seed evolution: parental conflicts in a multi-generational household

    Get PDF
    Seeds are multi-generational structures containing a small embryonic plant enclosed in layers of diverse parental origins. The evolution of seeds was a pinnacle in an evolutionary trend towards a progressive retention of embryos and gametes within parental tissue. This strategy, which dates back to the first land plants, allowed an increased protection and nourishing of the developing embryo. Flowering plants took parental control one step further with the evolution of a biparental endosperm that derives from a second parallel fertilization event. The endosperm directly nourishes the developing embryo and allows not only the maternal genes, but also paternal genes, to play an active role during seed development. The appearance of an endosperm set the conditions for the manifestation of conflicts of interest between maternal and paternal genomes over the allocation of resources to the developing embryos. As a consequence, a dynamic balance was established between maternal and paternal gene dosage in the endosperm, and maintaining a correct balance became essential to ensure a correct seed development. This balance was achieved in part by changes in the genetic constitution of the endosperm and through epigenetic mechanisms that allow a differential expression of alleles depending on their parental origin. This review discusses the evolutionary steps that resulted in the appearance of seeds and endosperm, and the epigenetic and genetic mechanisms that allow a harmonious coinhabitance of multiple generations within a single see

    Can bacteriofages be effective in controlling harmful biofilms?

    Get PDF
    (Bacterio)phages are viruses that specifically infect bacteria, causing cell lysis and therefore can be considered a valuable strategy for bacterial control. Recent studies have demonstrated the potential of using phages to control bacterial biofilms. Phages are able to penetrate the extracellular matrnc and can cause up to 90% of biofilm mass reduction even in old biofilms. However phage action can be impaired by components of the biofilm matrix, the slow growth of biofilm bacteria and the fast emergence of phage resistant phenotypes. We have conducted several studies of phage biofilm interaction and based on our experimental data, we have hypothesized that the general mechanisms of a virulent phage-biofilm infection, in a very simplistic model, can occur in four stages: 1) Transport of the phage particles through the biofilm matrix (by diffusion or convection mechanisms); 2) Settlement and/or attachment of phages onto bacterial cells embedded in the biofilm matrix, followed by adsorption and phage replicatiOn inside host cells; 3) Release of phage progeny to planktonic and biofilm phases, through host cell lysis and infection of neighbourhood biofilm cells resulting in biofilm biomomass reduct1on; 4) Detachment of biofilm portions and phages into the planktomc phase. Nevertheless, the interaction between phage and biofilms is a rather complex process. Theoretically, a biofilm should be rapidly infected because cells are more close to each other and this fact can enhance phage replication, when compared to the less accessible bacteria of planktonic cultures. On the other hand, the structure and compositiOn of the biofilm as well the physiology of the biofilm cells may impose some limitations to biofilm infection. Indeed, phage·biofilm interaction is greatly inFluenced by the biofilm age, biofilm structure, biofilm mode of growth and most importantly the host and phage characteristics. This work is a summary of all phage/biofilm interaction studies conducted by our team involving different phage types and host species

    Increasing plant group productivity through latent genetic variation for cooperation

    Full text link
    Historic yield advances in the major crops have, to a large extent, been achieved by selection for improved productivity of groups of plant individuals such as high-density stands. Research suggests that such improved group productivity depends on “cooperative” traits (e.g., erect leaves, short stems) that—while beneficial to the group—decrease individual fitness under competition. This poses a problem for some traditional breeding approaches, especially when selection occurs at the level of individuals, because “selfish” traits will be selected for and reduce yield in high-density monocultures. One approach, therefore, has been to select individuals based on ideotypes with traits expected to promote group productivity. However, this approach is limited to architectural and physiological traits whose effects on growth and competition are relatively easy to anticipate. Here, we developed a general and simple method for the discovery of alleles promoting cooperation in plant stands. Our method is based on the game-theoretical premise that alleles increasing cooperation benefit the monoculture group but are disadvantageous to the individual when facing noncooperative neighbors. Testing the approach using the model plant Arabidopsis thaliana, we found a major effect locus where the rarer allele was associated with increased cooperation and productivity in high-density stands. The allele likely affects a pleiotropic gene, since we find that it is also associated with reduced root competition but higher resistance against disease. Thus, even though cooperation is considered evolutionarily unstable except under special circumstances, conflicting selective forces acting on a pleiotropic gene might maintain latent genetic variation for cooperation in nature. Such variation, once identified in a crop, could rapidly be leveraged in modern breeding programs and provide efficient routes to increase yields

    Genetic dissection of the miR-200–Zeb1 axis reveals its importance in tumor differentiation and invasion

    Get PDF
    The epithelial-to-mesenchymal transition (EMT) is an important mechanism for cancer progression and metastasis. Numerous in vitro and tumor-profiling studies point to the miR-200–Zeb1 axis as crucial in regulating this process, yet in vivo studies involving its regulation within a physiological context are lacking. Here, we show that miR-200 ablation in the Rip-Tag2 insulinoma mouse model induces beta-cell dedifferentiation, initiates an EMT expression program, and promotes tumor invasion. Strikingly, disrupting the miR-200 sites of the endogenous Zeb1 locus causes a similar phenotype. Reexpressing members of the miR-200 superfamily in vitro reveals that the miR-200c family and not the co-expressed and closely related miR-141 family is responsible for regulation of Zeb1 and EMT. Our results thus show that disrupting the in vivo regulation of Zeb1 by miR-200c is sufficient to drive EMT, thus highlighting the importance of this axis in tumor progression and invasion and its potential as a therapeutic target.National Institute of General Medical Sciences (U.S.

    Single-gene resolution of diversity-driven overyielding in plant genotype mixtures

    Full text link
    In plant communities, diversity often increases productivity and functioning, but the specific underlying drivers are difficult to identify. Most ecological theories attribute positive diversity effects to complementary niches occupied by different species or genotypes. However, the specific nature of niche complementarity often remains unclear, including how it is expressed in terms of trait differences between plants. Here, we use a gene-centred approach to study positive diversity effects in mixtures of natural Arabidopsis thaliana genotypes. Using two orthogonal genetic mapping approaches, we find that between-plant allelic differences at the AtSUC8 locus are strongly associated with mixture overyielding. AtSUC8 encodes a proton-sucrose symporter and is expressed in root tissues. Genetic variation in AtSUC8 affects the biochemical activities of protein variants and natural variation at this locus is associated with different sensitivities of root growth to changes in substrate pH. We thus speculate that - in the particular case studied here - evolutionary divergence along an edaphic gradient resulted in the niche complementarity between genotypes that now drives overyielding in mixtures. Identifying genes important for ecosystem functioning may ultimately allow linking ecological processes to evolutionary drivers, help identify traits underlying positive diversity effects, and facilitate the development of high-performance crop variety mixtures

    Alterations in Peripheral Blood B Cell Subsets and Dynamics of B Cell Responses during Human Schistosomiasis

    Get PDF
    Antibody responses are thought to play an important role in control of Schistosoma infections, yet little is known about the phenotype and function of B cells in human schistosomiasis. We set out to characterize B cell subsets and B cell responses to B cell receptor and Toll-like receptor 9 stimulation in Gabonese schoolchildren with Schistosoma haematobium infection. Frequencies of memory B cell (MBC) subsets were increased, whereas naive B cell frequencies were reduced in the schistosome-infected group. At the functional level, isolated B cells from schistosome-infected children showed higher expression of the activation marker CD23 upon stimulation, but lower proliferation and TNF-α production. Importantly, 6-months after 3 rounds of praziquantel treatment, frequencies of naive B cells were increased, MBC frequencies were decreased and with the exception of TNF-α production, B cell responsiveness was restored to what was seen in uninfected children. These data show that S. haematobium infection leads to significant changes in the B cell compartment, both at the phenotypic and functional level

    Broadened T-cell Repertoire Diversity in ivIg-treated SLE Patients is Also Related to the Individual Status of Regulatory T-cells

    Get PDF
    Intravenous IgG (ivIg) is a therapeutic alternative for lupus erythematosus, the mechanism of which remains to be fully understood. Here we investigated whether ivIg affects two established sub-phenotypes of SLE, namely relative oligoclonality of circulating T-cells and reduced activity of CD4 + Foxp3+ regulatory T-cells (Tregs) reflected by lower CD25 surface density.Octapharma research funding; Fundação para a Ciência e a Tecnologia postdoctoral fellowships: (SFRH/BPD/20806/2004, SFRH/BPD/34648/2007); FCT Programa Pessoa travel grant

    BATLAS: Deconvoluting Brown Adipose Tissue

    Get PDF
    Recruitment and activation of thermogenic adipocytes have received increasing attention as a strategy to improve systemic metabolic control. The analysis of brown and brite adipocytes is complicated by the complexity of adipose tissue biopsies. Here, we provide an in-depth analysis of pure brown, brite, and white adipocyte transcriptomes. By combining mouse and human transcriptome data, we identify a gene signature that can classify brown and white adipocytes in mice and men. Using a machine-learning-based cell deconvolution approach, we develop an algorithm proficient in calculating the brown adipocyte content in complex human and mouse biopsies. Applying this algorithm, we can show in a human weight loss study that brown adipose tissue (BAT) content is associated with energy expenditure and the propensity to lose weight. This online available tool can be used for in-depth characterization of complex adipose tissue samples and may support the development of therapeutic strategies to increase energy expenditure in humans
    • …
    corecore