21 research outputs found

    Breast cancer: early diagnosis and effective treatment by drug delivery tracing

    Get PDF
    Breast cancer is the most frequent cancer in women and it is the main reason of cancer-related deaths of women worldwide. Different types of breast cancer diagnostic examinations are also available, such as mammography, MRI, biopsy, ultrasound and molecular imaging. Radionuclide-based imaging methods including SPECT and PET are useful in early diagnosis and treatment of the cancer. The radiolabeling of chemo drugs with nanoparticles should be recommended from the standpoint of an early diagnosis and effective treatment of breast cancer

    Lycopene as A Carotenoid Provides Radioprotectant and Antioxidant Effects by Quenching Radiation-Induced Free Radical Singlet Oxygen: An Overview

    Get PDF
    Radio-protectors are agents that protect human cells and tissues from undesirable ef - fects of ionizing radiation by mainly scavenging radiation-induced free radicals. Although chemical radio-protectors diminish these deleterious side effects they induce a number of unwanted effects on humans such as blood pressure modifications, vomiting, nausea, and both local and generalized cutaneous reactions. These disadvantages have led to emphasis on the use of some botanical radio-protectants as alternatives. This review has collected and organized studies on a plant-derived radio-protector, lycopene. Lycopene protects normal tissues and cells by scavenging free radicals. Therefore, treatment of cells with lycopene prior to exposure to an oxidative stress, oxidative molecules or ion - izing radiation may be an effective approach in diminishing undesirable effects of radia - tion byproducts. Studies have designated lycopene to be an effective radio-protector with negligible side effects

    A Monte Carlo study for optimizing the detector of SPECT imaging using a XCAT human phantom

    Get PDF
    BACKGROUND: Acquiring a high quality image has assigned an important concern for obtaining accurate diagnosis in nuclear medicine. Detector is a critical component of Single Photon Emission Computed Tomography (SPECT) imaging system for giving accurate information from exact pattern of radionuclide distribution in the target organ. The images are strongly affected by the attenuation, scattering, and response of the detector. The conventional detector is mainly made from sodium iodide activated by thallium [NaI(Tl)] in nuclear medicine imaging. The aim of the study. This study has planned to introduce a suitable for an optimized SPECT imaging. SIMIND Monte Carlo program was utilized for simulating a SPECT imaging system with a NaI(Tl) detector, and a low-energy high-resolution (LEHR) collimator. MATERIAL AND METHODS: The Planar and SPECT scans of a 99mTc point source and also an extended Cardiac-Torso (XCAT) computerized phantom with the experiment and simulated systems were prepared. After verification and validation of the simulated system, the similar scans of the phantoms were compared from the point of view of image quality for 7 scintillator crystals including: NaI(Tl), BGO, YAG:Ce, YAP:Ce, LuAG:Ce, LaBr3 and CZT. The parameters of energy and spatial resolution, and sensitivity of the systems were compared. Images were analyzed quantitatively by SSIM algorithm with Zhou Wang and Rouse/Hemami methods, and also qualitatively by two nuclear medicine specialists. RESULTS: Energy resolutions of the mentioned crystals obtained were: 9.864, 9.8545, 10.229, 10.221, 10.230, 10.131and10.223 percentage for 99mTc photopeak 140 Kev, respectively. Finally, SSIM indexes for the related phantom images were calculated to 0.794, 0.738, 0.735, 0.607, 0.760 and 0.811 compared to the NaI(Tl) acquired images, respectively. Medical diagnosis of the SPECT images of the phantom showed that the system with BGO crystal potentially provides a better detectability for hot and cold lesions in the liver of XCAT phantom. CONCLUSIONS: The results showed that BGO crystal has a high sensitivity and resolution, and also provides a better lesion detectability from the point of view of image quality on XCAT phantom

    A study on drug delivery tracing with radiolabeled mesoporous hydroxyapatite nanoparticles conjugated with 2DG/DOX for breast tumor cells

    Get PDF
    Background: Mesoporous nanoparticles have a great potential in targeted therapy approaches due to their ideal properties for encapsulation of various drugs, proteins and also biologically active molecules. Material and methods: We used mesoporous hydroxyapatite (HA) nanoparticles as a drug carrier and developed radiolabeled mesoporous HA containing of 2-deoxy-D-glucose (2DG) and Doxorubicin (DOX) with technetium-99m (99mTc) for imaging in in vitro and in vivo studies. Results: 2DG and DOX in presence of mesoporous HA nanoparticles more reduced the fraction of viable cells in the MDA-MB-231, MCF-7 human and MC4-L2 Balb/c mice breast cancer cells. The radiochemical purity of the nano-2DG-DOX complex with 99mTc was calculated to 96.8%. The results of cellular uptake showed a 44.77% increase in uptake of the [99mTc]-nano-2DG-DOX compared to the complex without nanoparticles (p < 0.001). Conclusion: Radioisotopic imaging demonstrated a high biochemical stability for [99mTc]-nano-2DG-DOX complex. The results demonstrated that [99mTc]-nano-2DG-DOX, may be used as an attractive candidate in cancer imaging and treatment managing.BACKGROUND: Mesoporous nanoparticles have a great potential in targeted therapy approaches due to their ideal properties for encapsulation of various drugs, proteins and also biologically active molecules. MATERIAL AND METHODS: We used mesoporous hydroxyapatite (HA) nanoparticles as a drug carrier and developed ra­diolabeled mesoporous HA containing of 2-deoxy-D-glucose (2DG) and Doxorubicin (DOX) with technetium-99m (99mTc) for imaging in in vitro and in vivo studies. RESULTS: 2DG and DOX in presence of mesoporous HA nanoparticles more reduced the fraction of viable cells in the MDA-MB-231, MCF-7 human and MC4-L2 Balb/c mice breast cancer cells. The radiochemical purity of the nano-2DG-DOX complex with 99mTc was calculated to 96.8%. The results of cellular uptake showed a 44.77% increase in uptake of the [99mTc]- nano-2DG-DOX compared to the complex without nanoparticles (p &lt; 0.001). CONCLUSIONS: Radioisotopic imaging demonstrated a high biochemical stability for [99mTc]-nano-2DG-DOX complex. The results demonstrated that [99mTc]-nano-2DG-DOX, may be used as an attractive candidate in cancer imaging and treatment managing.

    How much intravenous contrast media affect bone mineral density (BMD) assessed by routine computed tomogr

    Get PDF
    Purpose: The data from routine abdominal multi-detector CT (MDCT) examinations provide information to diagnosis of the bone mineral density (BMD). The aim of this study was to measure the effect of intravenous contrast media on the BMD measuring of lumbar spine vertebrae (L1–L3) with CT densitometric data, Hounsfield unit (HU), obtained by routine abdominal examinations. Patients and methods: The data on abdominal CT scans of 261 adults (150 females and 111 males) with a mean age of 59.6 years who underwent both unenhanced and enhanced abdominal CT examinations, with a 16-slice CT system (Toshiba Alexion Advance Edition 16, Japan), were evaluated for measuring the bone mineral density. Results: Using trabecular region of interest (ROI), CT attenuation considerably differed between the unenhanced and enhanced abdominal scans for each imaging. Conclusions: BMD values derived from the routine abdominal MDCT can be affected by intravenous contrast media in enhanced abdominal CT scanning. The impact of contrast media on the BMD decreases with increasing age of patients

    A Monte Carlo study on the performance evaluation of a parallel hole collimator for a HiReSPECT: A dedicated small-animal SPECT

    No full text
    Collimator geometry has an important contribution on the image quality in SPECT imaging. The purpose of this study was to investigate the effect of parallel hole collimator hole-size on the functional parameters (including the spatial resolution and sensitivity) and the image quality of a HiReSPECT imaging system using SIMIND Monte Carlo program. To find a proper trade-off between the sensitivity and spatial resolution, the collimator with hole diameter ranges of 0.3–1.5 mm (in steps of 0.3 mm) were used with a fixed septal and hole thickness values (0.2 mm and 34 mm, respectively). Lead, Gold, and Tungsten as the LEHR collimator material were also investigated. The results on a 99mTc point source scanning with the experimental and also simulated systems were matched to validate the simulated imaging system. The results on the simulation showed that decreasing the collimator hole size, especially in the Gold collimator, improved the spatial resolution to 18% and 3.2% compared to the Lead and the Tungsten, respectively. Meanwhile, the Lead collimator provided a good sensitivity in about of 7% and 8% better than that of Tungsten and Gold, respectively. Overall, the spatial resolution and sensitivity showed small differences among the three types of collimator materials assayed within the defined energy. By increasing the hole size, the Gold collimator produced lower scatter and penetration fractions than Tungsten and Lead collimator. The minimum detectable size of hot rods in micro-Jaszczak phantom on the iterative maximum-likelihood expectation maximization (MLEM) reconstructed images, were determined in the sectors of 1.6, 1.8, 2.0, 2.4 and 2.6 mm for scanning with the collimators in hole sizes of 0.3, 0.6, 0.9, 1.2 and 1.5 mm at a 5 cm distance from the phantom. The Gold collimator with hole size of 0.3 mm provided a better image quality with the HiReSPECT imaging
    corecore