481 research outputs found

    Gravitational lens optical scalars in terms of energy-momentum distributions

    Full text link
    This is a general work on gravitational lensing. We present new expressions for the optical scalars and the deflection angle in terms of the energy-momentum tensor components of matter distributions. Our work generalizes standard references in the literature where normally stringent assumptions are made on the sources. The new expressions are manifestly gauge invariant, since they are presented in terms of curvature components. We also present a method of approximation for solving the lens equations, that can be applied to any order.Comment: 17 pages, 2 figures. Titled changed. Small improvements. References added. Final version published in Phys.Rev.

    Parallel-propagated frame along null geodesics in higher-dimensional black hole spacetimes

    Full text link
    In [arXiv:0803.3259] the equations describing the parallel transport of orthonormal frames along timelike (spacelike) geodesics in a spacetime admitting a non-degenerate principal conformal Killing-Yano 2-form h were solved. The construction employed is based on studying the Darboux subspaces of the 2-form F obtained as a projection of h along the geodesic trajectory. In this paper we demonstrate that, although slightly modified, a similar construction is possible also in the case of null geodesics. In particular, we explicitly construct the parallel-transported frames along null geodesics in D=4,5,6 Kerr-NUT-(A)dS spacetimes. We further discuss the parallel transport along principal null directions in these spacetimes. Such directions coincide with the eigenvectors of the principal conformal Killing-Yano tensor. Finally, we show how to obtain a parallel-transported frame along null geodesics in the background of the 4D Plebanski-Demianski metric which admits only a conformal generalization of the Killing-Yano tensor.Comment: 17 pages, no figure

    On the Significance of the Weyl Curvature in a Relativistic Cosmological Model

    Full text link
    The Weyl curvature includes the Newtonian field and an additional field, the so-called anti-Newtonian. In this paper, we use the Bianchi and Ricci identities to provide a set of constraints and propagations for the Weyl fields. The temporal evolutions of propagations manifest explicit solutions of gravitational waves. We see that models with purely Newtonian field are inconsistent with relativistic models and obstruct sounding solutions. Therefore, both fields are necessary for the nonlocal nature and radiative solutions of gravitation.Comment: 15 pages, incorporating proof correction

    Gravitational Wave Propagation in Isotropic Cosmologies

    Get PDF
    We study the propagation of gravitational waves carrying arbitrary information through isotropic cosmologies. The waves are modelled as small perturbations of the background Robertson-Walker geometry. The perfect fluid matter distribution of the isotropic background is, in general, modified by small anisotropic stresses. For pure gravity waves, in which the perturbed Weyl tensor is radiative (i.e. type N in the Petrov classification), we construct explicit examples for which the presence of the anisotropic stress is shown to be essential and the histories of the wave-fronts in the background Robertson-Walker geometry are shear-free null hypersurfaces. The examples derived in this case are analogous to the Bateman waves of electromagnetic theory.Comment: 27 pages, accepted for publication in Phys.Rev.

    Gravitational Wave Emission from a Bounded Source: the Nonlinear Regime

    Full text link
    We study the dynamics of a bounded gravitational collapsing configuration emitting gravitational waves, where the exterior spacetime is described by Robinson-Trautman geometries. The full nonlinear regime is examined by using the Galerkin method that allows us to reduce the equations governing the dynamics to a finite-dimensional dynamical system, after a proper truncation procedure. Amongst the obtained results of the nonlinear evolution, one of the most impressive is the fact that the distribution of the mass fraction extracted by gravitational wave emission satisfies the distribution law of nonextensive statistics and this result is independent of the initial configurations considered.Comment: 3 page, 1 figure, proceedings of the X Marcel Grossmann Meeting 22-26 July, 2003, Rio de Janeir

    The Efficiency of Gravitational Bremsstrahlung Production in the Collision of Two Schwarzschild Black Holes

    Full text link
    We examine the efficiency of gravitational bremsstrahlung production in the process of head-on collision of two boosted Schwarzschild black holes. We constructed initial data for the characteristic initial value problem in Robinson-Trautman spacetimes, that represent two instantaneously stationary Schwarzschild black holes in motion towards each other with the same velocity. The Robinson-Trautman equation was integrated for these initial data using a numerical code based on the Galerkin method. The final resulting configuration is a boosted black hole with Bondi mass greater than the sum of the individual mass of each initial black hole. Two relevant aspects of the process are presented. The first relates the efficiency Δ\Delta of the energy extraction by gravitational wave emission to the mass of the final black hole. This relation is fitted by a distribution function of non-extensive thermostatistics with entropic parameter q≃1/2q \simeq 1/2; the result extends and validates analysis based on the linearized theory of gravitational wave emission. The second is a typical bremsstrahlung angular pattern in the early period of emission at the wave zone, a consequence of the deceleration of the black holes as they coalesce; this pattern evolves to a quadrupole form for later times.Comment: 16 pages, 4 figures, to appear in Int. J. Modern Phys. D (2008

    Dotted and Undotted Algebraic Spinor Fields in General Relativity

    Full text link
    We investigate using Clifford algebra methods the theory of algebraic dotted and undotted spinor fields over a Lorentzian spacetime and their realizations as matrix spinor fields, which are the usual dotted and undotted two component spinor fields. We found that some ad hoc rules postulated for the covariant derivatives of Pauli sigma matrices and also for the Dirac gamma matrices in General Relativity cover important physical meaning, which is not apparent in the usual matrix presentation of the theory of two components dotted and undotted spinor fields. We also discuss some issues related to the the previous one and which appear in a proposed "unified" theory of gravitation and electromagnetism which use two components dotted and undotted spinor fields and also paravector fields, which are particular sections of the even subundle of the Clifford bundle of spacetime.Comment: some new misprints have been correcte

    Dynamics of test bodies with spin in de Sitter spacetime

    Full text link
    We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.Comment: 11 pages, RevTex forma

    Gravitational Waves Astronomy: a cornerstone for gravitational theories

    Full text link
    Realizing a gravitational wave (GW) astronomy in next years is a great challenge for the scientific community. By giving a significant amount of new information, GWs will be a cornerstone for a better understanding of gravitational physics. In this paper we re-discuss that the GW astronomy will permit to solve a captivating issue of gravitation. In fact, it will be the definitive test for Einstein's general relativity (GR), or, alternatively, a strong endorsement for extended theories of gravity (ETG).Comment: To appear in Proceedings of the Workshop "Cosmology, the Quantum Vacuum and Zeta Functions" for the celebration of Emilio Elizalde's sixtieth birthday, Barcelona, March 8-10, 201

    On the propagation of jump discontinuities in relativistic cosmology

    Get PDF
    A recent dynamical formulation at derivative level \ptl^{3}g for fluid spacetime geometries (M,g,u)({\cal M}, {\bf g}, {\bf u}), that employs the concept of evolution systems in first-order symmetric hyperbolic format, implies the existence in the Weyl curvature branch of a set of timelike characteristic 3-surfaces associated with propagation speed |v| = \sfrac{1}{2} relative to fluid-comoving observers. We show it is the physical role of the constraint equations to prevent realisation of jump discontinuities in the derivatives of the related initial data so that Weyl curvature modes propagating along these 3-surfaces cannot be activated. In addition we introduce a new, illustrative first-order symmetric hyperbolic evolution system at derivative level \ptl^{2}g for baryotropic perfect fluid cosmological models that are invariant under the transformations of an Abelian G2G_{2} isometry group.Comment: 19 pages, 1 table, REVTeX v3.1 (10pt), submitted for publication to Physical Review D; added Report-No, corrected typo
    • …
    corecore