13 research outputs found
Tunable Thermal Bioswitches as a Control Modality for Next Generation Therapeutics
Synthetic biology is rapidly contributing to the field of therapeutic development to create increasingly potent agents for the treatment of a variety of diseases. These living "designer therapeutics" are capable of integrating multiple sensory inputs into decision making processes to unleash an array of powerful signaling and effector responses. Included in the great therapeutic potential of these agents, however, is a cognate risk of severe toxicity resulting from runaway on-target or erroneously induced off-target activity. The ability to remotely control engineered therapeutic cells after deployment into patient tissue would drastically reduce the potential dangers of such interventions. However, among existing biological control methods, systemic chemical administration typically lacks the spatial precision needed to modulate activity at specific anatomical locations, while optical approaches suffer from poor light penetration into biological tissue. On the other hand, temperature can be controlled both globally and locally — at depth — using technologies such as focused ultrasound, infrared light and magnetic particle hyperthermia. In addition, body temperature can serve as an indicator of the patient's condition. Overall, temperature is a versatile signal which can provide a handle to actuate a biological response for the control of therapeutic agents.
In this thesis, a tunable and modular system is developed to respond to thermal perturbations in cellular environments and affect a biological response. At the core of this system is a pair of single-component thermosensing proteins whose dimerization is strongly and sharply coupled to their thermal environment. These domains are first utilized in their native context as negative regulators of transcription in prokaryotes, wherein they are integrated into genetic circuits to control expression of reporter genes. These gene circuits show strong and sharp thermal activation and can be utilized in multiplex to affect higher order logical operations. Cells imbued with these circuits demonstrate transcriptional activation upon global thermal elevation within the host animal within which they reside (fever) or upon a spatiotemporally localized temperature shift imparted by focused ultrasound hyperthermia. In subsequent work, one of these bioswitches is introduced into mammalian cells where it functions as a modular Protein-Protein Interaction (PPI) domain, conferring temperature-dependent protein localization.
The work conducted in this thesis demonstrates the feasibility of utilizing temperature as a stimulus for biological activity. This technology can be harnessed to regulate therapeutically relevant processes in bacterial and mammalian cells such as transcriptional regulation and protein localization, and potentially broader protein function. The thermal bioswitches described herein could be utilized to engineer an array of research tools and biological therapies with actuation driven by spatiotemporally precise noninvasively applied stimuli or by real-time sensing of host conditions.</p
Thermal Control of Engineered T-cells
Genetically engineered T-cells are being developed to perform a variety of therapeutic functions. However, no robust mechanisms exist to externally control the activity of T-cells at specific locations within the body. Such spatiotemporal control could help mitigate potential off-target toxicity due to incomplete molecular specificity in applications such as T-cell immunotherapy against solid tumors. Temperature is a versatile external control signal that can be delivered to target tissues in vivo using techniques such as focused ultrasound and magnetic hyperthermia. Here, we test the ability of heat shock promoters to mediate thermal actuation of genetic circuits in primary human T-cells in the well-tolerated temperature range of 37–42 °C, and introduce genetic architectures enabling the tuning of the amplitude and duration of thermal activation. We demonstrate the use of these circuits to control the expression of chimeric antigen receptors and cytokines, and the killing of target tumor cells. This technology provides a critical tool to direct the activity of T-cells after they are deployed inside the body
Tunable thermal bioswitches for in vivo control of microbial therapeutics
Temperature is a unique input signal that could be used by engineered microbial therapeutics to sense and respond to host conditions or spatially targeted external triggers such as focused ultrasound. To enable these possibilities, we present two families of tunable, orthogonal, temperature-dependent transcriptional repressors providing switch-like control of bacterial gene expression at thresholds spanning the biomedically relevant range of 32–46°C. We integrate these molecular bioswitches into thermal logic circuits and demonstrate their utility in three in vivo microbial therapy scenarios, including spatially precise activation using focused ultrasound, modulation of activity in response to a host fever, and self-destruction after fecal elimination to prevent environmental escape. This technology provides a critical capability for coupling endogenous or applied thermal signals to cellular function in basic research, biomedical and industrial applications
Going Deeper: Biomolecular Tools for Acoustic and Magnetic Imaging and Control of Cellular Function
Most cellular phenomena of interest to mammalian biology occur within the context of living tissues and organisms. However, today’s most advanced tools for observing and manipulating cellular function, based on fluorescent or light-controlled proteins, work best in cultured cells, transparent model species, or small, surgically accessed anatomical regions. Their reach into deep tissues and larger animals is limited by photon scattering. To overcome this limitation, we must design biochemical tools that interface with more penetrant forms of energy. For example, sound waves and magnetic fields easily permeate most biological tissues, allowing the formation of images and delivery of energy for actuation. These capabilities are widely used in clinical techniques such as diagnostic ultrasound, magnetic resonance imaging, focused ultrasound ablation, and magnetic particle hyperthermia. Each of these modalities offers spatial and temporal precision that could be used to study a multitude of cellular processes in vivo. However, connecting these techniques to cellular functions such as gene expression, proliferation, migration, and signaling requires the development of new biochemical tools that can interact with sound waves and magnetic fields as optogenetic tools interact with photons. Here, we discuss the exciting challenges this poses for biomolecular engineering and provide examples of recent advances pointing the way to greater depth in in vivo cell biology
Tunable thermal bioswitches for in vivo control of microbial therapeutics
Temperature is a unique input signal that could be used by engineered microbial therapeutics to sense and respond to host conditions or spatially targeted external triggers such as focused ultrasound. To enable these possibilities, we present two families of tunable, orthogonal, temperature-dependent transcriptional repressors providing switch-like control of bacterial gene expression at thresholds spanning the biomedically relevant range of 32–46°C. We integrate these molecular bioswitches into thermal logic circuits and demonstrate their utility in three in vivo microbial therapy scenarios, including spatially precise activation using focused ultrasound, modulation of activity in response to a host fever, and self-destruction after fecal elimination to prevent environmental escape. This technology provides a critical capability for coupling endogenous or applied thermal signals to cellular function in basic research, biomedical and industrial applications
3D Picture of the SYK-VAV1 Protein Complex: Tracking the B-Cell Signal One Complex at a Time
Protein signaling is the key method by which cells recognize a stimulus from their environment and convert it into a response. Signaling occurs in many forms: hormones, growth factors, and even proteins may act as signals from the environment. The response to their detection must be carried from the cell surface, where the signal is detected, to the nucleus, where the cell alters its DNA expression. This study analyzes one component in the signaling pathway of Spleen Tyrosine Kinase (Syk). The Syk protein receives a signal from B-cell receptors and amplifies it, resulting in an adaptive immune response and the production of antibodies for targeting foreign molecules. Strikingly, constant amplification of the Syk signal can transform B-cells into a cancerous phenotype and has been associated with cancers of the lymphatic system. Syk has also been implicated in autoimmune diseases such as rheumatoid arthritis. This study uses nuclear magnetic resonance spectroscopy to determine the structure of a segment from the Syk protein bound to Vav1, a downstream signaling protein that has been implicated in various cancers. The preliminary result will be refined using a molecular dynamics simulation to obtain the most energetically stable conformation of the protein-ligand interaction. The terminal results of this experiment will reveal the structural details of the Syk-Vav1 interaction, which may describe a possible therapeutic target in the treatment of proliferative B-cell disorders, as well as some types of cancer. Using this information, one or more drugs may be synthesized to block the interaction in cancerous cells, providing a therapeutic avenue to treat the disease
Tunable Thermal Bioswitches for In Vivo Control of Bacterial Therapeutics
While our ability to engineer complex genetic circuits that orchestrate the behavior of therapeutic microbes has rapidly advanced, we still lack tools allowing us to communicate with microbial agents after their deployment
inside host organisms, for example, to deliver instructions based on the agents’ location in the body. To provide such capabilities, we engineered tunable transcriptional
bioswitches that enable noninvasive remote control over cell function deep inside living organisms (Piraner et al., Nat. Chem. Biol. 13, 75–80). We demonstrated the utility
of these sensors in three in vivo bacterial therapy applications, in which bacteria were activated with spatiotemporal precision via focused ultrasound, modulated their gene expression in response to fever, and triggered cell death upon leaving the body
Design and modular assembly of synthetic intramembrane proteolysis receptors for custom gene regulation in therapeutic cells
[Synthetic biology has established powerful tools to precisely control cell function. Engineering these systems to meet clinical requirements has enormous medical implications. Here, we adopted a clinically driven design process to build receptors for the autonomous control of therapeutic cells. We examined the function of key domains involved in regulated intramembrane proteolysis and showed that systematic modular engineering can generate a class of receptors we call SyNthetic Intramembrane Proteolysis Receptors (SNIPRs) that have tunable sensing and transcriptional response abilities. We demonstrate the potential transformative utility of the receptor platform by engineering human primary T cells for multi-antigen recognition and production of dosed, bioactive payloads relevant to the treatment of disease. Our design framework enables the development of fully humanized and customizable transcriptional receptors for the programming of therapeutic cells suitable for clinical translation.]https://www.biorxiv.org/content/10.1101/2021.05.21.445218v1Published versio
Recommended from our members
Modular design of synthetic receptors for programmed gene regulation in cell therapies
Synthetic biology has established powerful tools to precisely control cell function. Engineering these systems to meet clinical requirements has enormous medical implications. Here, we adopted a clinically driven design process to build receptors for the autonomous control of therapeutic cells. We examined the function of key domains involved in regulated intramembrane proteolysis and showed that systematic modular engineering can generate a class of receptors that we call synthetic intramembrane proteolysis receptors (SNIPRs) that have tunable sensing and transcriptional response abilities. We demonstrate the therapeutic potential of the receptor platform by engineering human primary T cells for multi-antigen recognition and production of dosed, bioactive payloads relevant to the treatment of disease. Our design framework enables the development of fully humanized and customizable transcriptional receptors for the programming of therapeutic cells suitable for clinical translation
Modular design of synthetic receptors for programmed gene regulation in cell therapies
Synthetic biology has established powerful tools to precisely control cell function. Engineering these systems to meet clinical requirements has enormous medical implications. Here, we adopted a clinically driven design process to build receptors for the autonomous control of therapeutic cells. We examined the function of key domains involved in regulated intramembrane proteolysis and showed that systematic modular engineering can generate a class of receptors that we call synthetic intramembrane proteolysis receptors (SNIPRs) that have tunable sensing and transcriptional response abilities. We demonstrate the therapeutic potential of the receptor platform by engineering human primary T cells for multi-antigen recognition and production of dosed, bioactive payloads relevant to the treatment of disease. Our design framework enables the development of fully humanized and customizable transcriptional receptors for the programming of therapeutic cells suitable for clinical translation