6 research outputs found

    Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector

    Get PDF
    AbstractTraditional methods of transgene delivery in livestock are inefficient. Recently, human immunodeficiency virus (HIV-1) based lentiviral vectors have been shown to offer an efficient transgene delivery system. We now extend this method by demonstrating efficient generation of transgenic pigs using an equine infectious anaemia virus derived vector. We used this vector to deliver a green fluorescent protein expressing transgene; 31% of injected/transferred eggs resulted in a transgenic founder animal and 95% of founder animals displayed green fluorescence. This compares favourably with results using HIV-1 based vectors, and is substantially more efficient than the standard pronuclear microinjection method, indicating that lentiviral transgene delivery may be a general tool with which to efficiently generate transgenic mammals

    A synthetic lethal screen identifies a role for the cortical actin patch/endocytosis complex in the response to nutrient deprivation in Saccharomyces cerevisiae.

    No full text
    Saccharomyces cerevisiae whi2Delta cells are unable to halt cell division in response to nutrient limitation and are sensitive to a wide variety of stresses. A synthetic lethal screen resulted in the isolation of siw mutants that had a phenotype similar to that of whi2Delta. Among these were mutations affecting SIW14, FEN2, SLT2, and THR4. Fluid-phase endocytosis is severely reduced or abolished in whi2Delta, siw14Delta, fen2Delta, and thr4Delta mutants. Furthermore, whi2Delta and siw14Delta mutants produce large actin clumps in stationary phase similar to those seen in prk1Delta ark1Delta mutants defective in protein kinases that regulate the actin cytoskeleton. Overexpression of SIW14 in a prk1Delta strain resulted in a loss of cortical actin patches and cables and was lethal. Overexpression of SIW14 also rescued the caffeine sensitivity of the slt2 mutant isolated in the screen, but this was not due to alteration of the phosphorylation state of Slt2. These observations suggest that endocytosis and the organization of the actin cytoskeleton are required for the proper response to nutrient limitation. This hypothesis is supported by the observation that rvs161Delta, sla1Delta, sla2Delta, vrp1Delta, ypt51Delta, ypt52Delta, and end3Delta mutations, which disrupt the organization of the actin cytoskeleton and/or reduce endocytosis, have a phenotype similar to that of whi2Delta mutants

    Development of a replication-competent lentivirus assay for dendritic cell-targeting lentiviral vectors

    No full text
    It is a current regulatory requirement to demonstrate absence of detectable replication-competent lentivirus (RCL) in lentiviral vector products prior to use in clinical trials. Immune Design previously described an HIV-1-based integration-deficient lentiviral vector for use in cancer immunotherapy (VP02). VP02 is enveloped with E1001, a modified Sindbis virus glycoprotein which targets dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) expressed on dendritic cells in vivo. Vector enveloped with E1001 does not transduce T-cell lines used in standard HIV-1-based RCL assays, making current RCL testing formats unsuitable for testing VP02. We therefore developed a novel assay to test for RCL in clinical lots of VP02. This assay, which utilizes a murine leukemia positive control virus and a 293F cell line expressing the E1001 receptor DC-SIGN, meets a series of evaluation criteria defined in collaboration with US regulatory authorities and demonstrates the ability of the assay format to amplify and detect a hypothetical RCL derived from VP02 vector components. This assay was qualified and used to test six independent GMP production lots of VP02, in which no RCL was detected. We propose that the evaluation criteria used to rationally design this novel method should be considered when developing an RCL assay for any lentiviral vector
    corecore