14 research outputs found

    Post-transcriptional microRNA repression of PMP22 dose in severe Charcot-Marie-Tooth disease type 1

    Get PDF
    Copy number variation (CNV) may lead to pathological traits, and Charcot-Marie-Tooth disease type 1A (CMT1A), the commonest inherited peripheral neuropathy, is due to a genomic duplication encompassing the dosage-sensitive PMP22 gene. MicroRNAs act as repressors on post-transcriptional regulation of gene expression and in rodent models of CMT1A, overexpression of one such microRNA (miR-29a) has been shown to reduce the PMP22 transcript and protein level. Here we present genomic and functional evidence, for the first time in a human CNV-associated phenotype, of the 3' untranslated region (3'-UTR)-mediated role of microRNA repression on gene expression. The proband of the family presented with an early-onset, severe sensorimotor demyelinating neuropathy and harboured a novel de novo deletion in the PMP22 3'-UTR. The deletion is predicted to include the miR-29a seed binding site and transcript analysis of dermal myelinated nerve fibres using a novel platform, revealed a marked increase in PMP22 transcript levels. Functional evidence from Schwann cell lines harbouring the wildtype and mutant 3'-UTR showed significantly increased reporter assay activity in the latter which was not ameliorated by overexpression of a miR-29a mimic. This shows the importance of miR-29a in regulating PMP22 expression and opens an avenue for therapeutic drug development

    Description of a patient cohort with Hereditary Sensory Neuropathy Type 1 without retinal disease Macular Telangiectasia type 2 – implications for retinal screening in HSN1

    No full text
    BACKGROUND AND AIMS: Pathogenic variants in the genes encoding serine palmitoyl transferase (SPTLC1 or SPTLC2) are the most common causes of the rare peripheral nerve disorder Hereditary Sensory Neuropathy Type 1 (HSN1). Macular telangiectasia type 2 (MacTel), a retinal disorder associated with disordered serine-glycine metabolism and has been described in some patients with HSN1. This study aims to further investigate this association in a cohort of people with HSN1. METHODS: Fourteen patients with a clinically and genetically confirmed diagnosis of HSN1 from the National Hospital for Neurology and Neurosurgery (NHNN, University College London Hospitals NHS Foundation Trust, London, United Kingdom) were recruited to the MacTel Registry, between July 2018 and April 2019. Two additional patients were identified from the dataset of the international clinical registry study (www.lmri.net). Ocular examination included fundus autofluorescence, blue light and infrared reflectance, macular pigment optical density mapping, and optical coherence tomography. RESULTS: Twelve patients had a pathogenic variant in the SPTLC1 gene, with p.Cys133Trp in eleven cases (92%) and p.Cys133Tyr in one case (8%). Four patients had a variant in the SPTLC2 gene. None of the patients showed clinical evidence of MacTel. INTERPRETATION: The link between HSN1 and MacTel seems more complex than can solely be explained by the genetic variants. An extension of the spectrum of SPTLC1/2-related disease with phenotypic pleiotropy is proposed. HSN1 patients should be screened for visual symptoms and referred for specialist retinal screening, but the association of the two diseases is likely to be variable and remains unexplained. This article is protected by copyright. All rights reserved

    Post-transcriptional microRNA repression of PMP22 dose in severe Charcot-Marie-Tooth disease type 1

    No full text
    Copy number variation (CNV) may lead to pathological traits, and Charcot-Marie-Tooth disease type 1A (CMT1A), the commonest inherited peripheral neuropathy, is due to a genomic duplication encompassing the dosage-sensitive PMP22 gene. MicroRNAs act as repressors on post-transcriptional regulation of gene expression and in rodent models of CMT1A, overexpression of one such microRNA (miR-29a) has been shown to reduce the PMP22 transcript and protein level. Here we present genomic and functional evidence, for the first time in a human CNV-associated phenotype, of the 3′ untranslated region (3′-UTR)-mediated role of microRNA repression on gene expression. The proband of the family presented with an early-onset, severe sensorimotor demyelinating neuropathy and harboured a novel de novo deletion in the PMP22 3′-UTR. The deletion is predicted to include the miR-29a seed binding site and transcript analysis of dermal myelinated nerve fibres using a novel platform, revealed a marked increase in PMP22 transcript levels. Functional evidence from Schwann cell lines harbouring the wild-type and mutant 3′-UTR showed significantly increased reporter assay activity in the latter, which was not ameliorated by overexpression of a miR-29a mimic. This shows the importance of miR-29a in regulating PMP22 expression and opens an avenue for therapeutic drug development

    Charcot-Marie-Tooth disease type 2CC due to NEFH variants causes a progressive, non-length-dependent, motor-predominant phenotype

    Get PDF
    International audienceObjective Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC).Methods In this large observational study, we present phenotype–genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families.Results The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients.All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3′-UTR).Conclusions This phenotype–genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease’s unique molecular genetics
    corecore