98 research outputs found

    Comparative analysis of prostatic acid phosphatase and prostate-specific antigen mRNA levels in hyperplastic prostate stimulated with steroid hormones and growth factors

    Get PDF
    Prostatic acid phosphatase (PAP) and prostate-specific antigen (PSA) are the markers of human prostatic gland. However, it is still not completely understood if and how, steroid hormones and growth factors affect their expression and metabolism in the respect to the major pathologies of the gland. Appropriate studies were carried out on histopathologically diagnosed benign prostatic hyperplasia - BPH (n = 42) using tissue slices and cells derived from them. They were incubated with steroid hormones: 5-α-dihydrotestosterone (DHT), estradiol (E) and growth factors: epidermal growth factor (EGF), basic fibroblastic growth factor (bFGF) under culture conditions for up to 24 hours. 32P-labelled specific oligonucleotide probes were used to analyze total RNA isolated from each sample for the presence of PAP and PSA mRNAs. DHT, E, bFGF, EGF or both DHT + bFGF and DHT + EGF increased PAP and PSA mRNA levels in a time- and dose-dependent manner. The highest and statistically significant increase (P <0.001) for PAP mRNA was observed when DHT + bFGF were present in the medium while for PSA mRNA if DHT + EGF were added to the medium. Slow but constant decrease of PAP and PSA mRNA levels was observed in the absence of each of these factors in the incubation medium. The results suggest that early expression of PSA and PAP genes and/or their mRNA stability strongly depend on DHT while differ in their response to EGF and bFGF

    Increased Akt signaling resulting from the loss of androgen responsiveness in prostate cancer

    Get PDF
    The mechanisms responsible for the switch of prostate cancer from androgen-sensitive (AS) to androgen-insensitive (AI) form are not well understood. Regulation of androgen receptor (AR), through which androgens control the expression of genes involved in prostate cells proliferation, migration and death also involves its cross-talk with the other signaling pathways, transcription factors and coregulatory proteins, such as β-catenin. With the aim to determine their possible contribution in triggering the switch from AS to AI form, which occurs upon androgen deprivation therapy - AR, Akt and β-catenin expression were knocked-down with respective siRNAs. Treatment of LNCaP prostate cells with siRNA for AR significantly reduced their proliferation (45-70%), expression of nuclear β- catenin, cyclin-D1, cyclin-G1, c-Myc as well as activity of metalloproteinases (MMPs) -2,-7,-9 and cell migration. Surprisingly, after longer (over 72 hrs) silencing of AR in LNCaP cells, elevated levels of p-Akt were detected and enhanced proliferation as well as expression of nuclear β-catenin, cyclin-D1, c-Myc and activity of MMPs were observed. Such effects were not observed in either PC-3 or DU145 AI cells. However, silencing of Akt and /or β-catenin in those as well as in LNCaP cells led to their decreased proliferation and migration. Our findings suggest that in prostate cancer cells, either AR or Akt signaling prevails, depending on their initial androgen sensitivity and its availability. In AI prostate cancer cells, Akt takes over the role of AR and more effectively contributes through the same signaling molecule, β-catenin, to AI cancer progression

    Adhesion properties of human bladder cell lines with extracellular matrix components : the role of integrins and glycosylation

    Get PDF
    Integrin subunits present on human bladder cells displayed heterogeneous functional specificity in adhesion to extracellular matrix proteins (ECM). The non-malignant cell line (HCV29) showed significantly higher adhesion efficiency to collagen IV, laminin (LN) and fibronectin (FN) than cancer (T24, Hu456) and v-raf transfected (BC3726) cell lines. Specific antibodies to the α2, a5 and β1 integrin subunits inhibited adhesion of the non-malignant cells, indicating these integrin participation in the adhesion to ECM proteins. In contrast, adhesion of cancer cells was not inhibited by specific antibodies to the β1 integrin subunit. Antibodies to α3 integrin increased adhesion of cancer cells to collagen, LN and FN, but also of the HCV29 line with colagen. It seems that α3 subunit plays a major role in modulation of other integrin receptors especially in cancer cells. Differences in adhesion to ECM proteins between the non-malignant and cancer cell lines in response to Gal and Fuc were not evident, except for the v-raf transfected cell line which showed a distinct about 6-fold increased adhesion to LN on addition of both saccharides. N-Acetylneuraminic acid inhibited adhesion of all cell lines to LN and FN irrespective of their malignancy

    mTOR inhibitor Everolimus-induced apoptosis in melanoma cells

    Get PDF
    Melanoma is the most aggressive, therapy-resistant skin cancer. The mammalian target of rapamycin (mTOR), the serine/ threonine kinase which integrates both intracellular and extracellular signals, plays a crucial role in coordinating the balance between the growth and death of cells. The object of this study is a comparison of the influence of mTOR inhibitor everolimus in the concentration range between 20 nM and 10 μM, used individually and in combination with selected downstream protein kinases inhibitors: LY294002 (PI3K), U0126 (ERK1/2), AS-703026 (MEK) and MK-2206 (AKT) on the expression of prosurvival proteins: p-Bcl-2 (S70), p-Bcl-2 (T56), Bcl-2, Bcl-xL, Mcl-1, activity of caspase-3, proliferation and induction of apoptosis in melanoma cells. Current results clearly show that the nanomolar concentration of the mTOR inhibitor everolimus in combination with the inhibitor of MAP kinase (AS-703026) or AKT kinase (MK-2206) is effective in inducing apoptosis and reducing proliferation of melanoma cells. The herein research results confirm the hypothesis on the important role of mTOR signaling in cancer progression, and gives hope that implementation of successful combination of its inhibitors will find recognition and application in cancer treatment in the near future

    Integrin linked kinase regulates endosomal recycling of N-cadherin in melanoma cells

    Get PDF
    Malignant transformation is characterized by a phenotype "switch" from E- to N-cadherin - a major hallmark of epithelial to mesenchymal transition (EMT). The increased expression of N-cadherin is commonly followed by a growing capacity for migration as well as resistance to apoptosis. Integrin Linked Kinase (ILK) is a key molecule involved in EMT and progression of cancer cells. ILK is known as a major signaling mediator involved in cadherin switch, but the specific mechanism through which ILK modulates N-cadherin expression is still not clear. Studies were carried out on human melanoma WM793 and 1205Lu cell lines. Expression of proteins was analyzed using PCR and Western Blot; siRNA transfection was done for ILK. Analysis of cell signaling pathways was monitored with phospho-specific antibodies. Subcellular localization of protein was studied using the ProteoExtract Subcellular Kit and Western blot analysis. Our data show that ILK knockdown by siRNA did suppress N-cadherin expression in melanoma, but only at the protein level. The ILK silencing-induced decrease of N-cadherin membranous expression in melanoma highlights the likely crucial role of ILK in the coordination of membrane trafficking through alteration of Rab expression. It is essential to understand the molecular mechanism of increased N-cadherin expression in cancer to possibly use it in the search of new therapeutic targets

    mTOR inhibitor everolimus reduces invasiveness of melanoma cells

    Get PDF
    The mammalian target of rapamycin (mTOR) plays a key role in several cellular processes: proliferation, survival, invasion, and angiogenesis, and therefore, controls cell behavior both in health and in disease. Dysregulation of the mTOR signaling is involved in some of the cancer hallmarks, and thus the mTOR pathway is an important target for the development of a new anticancer therapy. The object of this study is recognition of the possible role of mTOR kinase inhibitors-everolimus single and in combination with selected downstream protein kinases inhibitors: LY294002 (PI3 K), U0126 (ERK1/2), GDC-0879 (B-RAF), AS-703026 (MEK), MK-2206 (AKT), PLX-4032 (B-RRAF) in cell invasion in malignant melanoma. Treatment of melanoma cells with everolimus led to a significant decrease in the level of both phosphorylated: mTOR (Ser2448) and mTOR (Ser2481) as well as their downstream effectors. The use of protein kinase inhibitors produced a significant decrease in metalloproteinases (MMPs) activity, as well as diminished invasion, especially when used in combination. The best results in the inhibition of both MMPs and cell invasiveness were obtained for the combination of an mTOR inhibitor- everolimus with a B-RAF inhibitor-PLX-4032. Slightly less profound reduction of invasiveness was obtained for the combinations of an mTOR inhibitor-everolimus with ERK1/2 inhibitor-U126 or MEK inhibitor-AS-703026 and in the case of MMPs activity decrease for PI3 K inhibitor-LY294002 and AKT inhibitor-MK-2206. The simultaneous use of everolimus or another new generation rapalog with selected inhibitors of crucial signaling kinases seems to be a promising concept in cancer treatment

    Different glycosylation of cadherins from human bladder non-malignant and cancer cell lines

    Get PDF
    BACKGROUND: The aim of the present study was to determine whether stage of invasiveness of bladder cancer cell lines contributes to alterations in glycan pattern of their cadherins. RESULTS: Human non-malignant epithelial cell of ureter HCV29, v-raf transfected HCV29 line (BC3726) and transitional cell cancers of urine bladder Hu456 and T24 were grown in cell culture. Equal amounts of protein from each cell extracts were separated by SDS-PAGE electrophoresis and were blotted on an Immobilon P membrane. Cadherins were immunodetected using anti-pan cadherin mAb and lectin blotting assays were performed, in parallel. N-oligosaccharides were analysed by specific reaction with Galanthus nivalis agglutinin (GNA), Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), Datura stramonium agglutinin (DSA), Aleuria aurantia agglutinin (AAA), Phaseolus vulgaris agglutinin (PHA-L) and wheat germ agglutinin (WGA). The cadherin from HCV29 cell line possessed bi- and/or 2,4-branched triantennary complex type glycans, some of which were α2,6-sialylated. The cadherin from BC3726 cell line exhibited exclusively high mannose type glycans. Cadherins from Hu456 and T24 cell lines expressed high mannose type glycans as well as β1,6-branched oligosaccharides with poly-N-acetyllactosamine structures and α2,3-linked sialic acid residues. Additionally, the presence of fucose and α2,6-sialic acid residues on the cadherin from T24 cell line was detected. CONCLUSIONS: These results indicate that N-glycosylation pattern of cadherin from bladder cancer cell line undergoes modification during carcinogenesis

    AFM-based analysis of Wharton's jelly mesenchymal stem cells

    Get PDF
    Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are multipotent stem cells that can be used in regenerative medicine. However, to reach the high therapeutic efficacy of WJ-MSCs, it is necessary to obtain a large amount of MSCs, which requires their extensive in vitro culturing. Numerous studies have shown that in vitro expansion of MSCs can lead to changes in cell behavior; cells lose their ability to proliferate, differentiate and migrate. One of the important measures of cells’ migration potential is their elasticity, determined by atomic force microscopy (AFM) and quantified by Young’s modulus. This work describes the elasticity of WJ-MSCs during in vitro cultivation. To identify the properties that enable transmigration, the deformability of WJ-MSCs that were able to migrate across the endothelial monolayer or Matrigel was analyzed by AFM. We showed that WJ-MSCs displayed differences in deformability during in vitro cultivation. This phenomenon seems to be strongly correlated with the organization of F-actin and reflects the changes characteristic for stem cell maturation. Furthermore, the results confirm the relationship between the deformability of WJ-MSCs and their migration potential and suggest the use of Young’s modulus as one of the measures of competency of MSCs with respect to their possible use in therapy
    corecore