20 research outputs found

    Magnetic patterning of Co/Ni layered systems by plasma oxidation

    Get PDF
    We studied the structural, chemical, and magnetic properties of Ti/Au/Co/Ni layered systems subjected to plasma oxidation. The process results in the formation of NiO at the expense of metallic Ni, as clearly evidenced by X-ray photoelectron spectroscopy, while not affecting the surface roughness and grain size of the Co/Ni bilayers. Since the decrease of the thickness of the Ni layer and the formation of NiO increase the perpendicular magnetic anisotropy, oxidation may be locally applied for magnetic patterning. Using this approach, we created 2D heterostructures characterized by different combinations of magnetic properties in areas modified by plasma oxidation and in the regions protected from oxidation. As plasma oxidation is an easy to use, low cost, and commonly utilized technique in industrial applications, it may constitute an improvement over other magnetic patterning methods

    Tailoring Perpendicular Exchange Bias Coupling in Au/Co/NiO Systems by Ion Bombardment

    No full text
    Here, we systematically investigated the influence of ion bombardment with different fluences on the strength and direction of the exchange bias coupling in Au/Co/NiO systems with perpendicular magnetic anisotropy of the Co layer. We found that the direction of the exchange bias coupling can be reversed as a result of ion bombardment performed in an external magnetic field which is in the opposite direction to the magnetic field applied during film deposition. Moreover, the strength of the exchange bias coupling can be tailored by varying the ion fluence. These results show behaviors similar to the results found for systems of ferromagnetic layers with in-plane anisotropy. Our experimental work, supported by a two-energy-level model, demonstrates that exchange bias coupling can be tuned in a layered system with perpendicular magnetic anisotropy using ion bombardment
    corecore