193 research outputs found

    Size-assortative mating and sexual size dimorphism are predictable from simple mechanics of mate-grasping behavior

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major challenge in evolutionary biology is to understand the typically complex interactions between diverse counter-balancing factors of Darwinian selection for size assortative mating and sexual size dimorphism. It appears that rarely a simple mechanism could provide a major explanation of these phenomena. Mechanics of behaviors can predict animal morphology, such like adaptations to locomotion in animals from various of taxa, but its potential to predict size-assortative mating and its evolutionary consequences has been less explored. Mate-grasping by males, using specialized adaptive morphologies of their forelegs, midlegs or even antennae wrapped around female body at specific locations, is a general mating strategy of many animals, but the contribution of the mechanics of this wide-spread behavior to the evolution of mating behavior and sexual size dimorphism has been largely ignored.</p> <p>Results</p> <p>Here, we explore the consequences of a simple, and previously ignored, fact that in a grasping posture the position of the male's grasping appendages relative to the female's body is often a function of body size difference between the sexes. Using an approach taken from robot mechanics we model coercive grasping of females by water strider <it>Gerris gracilicornis </it>males during mating initiation struggles. We determine that the male optimal size (relative to the female size), which gives the males the highest grasping force, properly predicts the experimentally measured highest mating success. Through field sampling and simulation modeling of a natural population we determine that the simple mechanical model, which ignores most of the other hypothetical counter-balancing selection pressures on body size, is sufficient to account for size-assortative mating pattern as well as species-specific sexual dimorphism in body size of <it>G. gracilicornis</it>.</p> <p>Conclusion</p> <p>The results indicate how a simple and previously overlooked physical mechanism common in many taxa is sufficient to account for, or importantly contribute to, size-assortative mating and its consequences for the evolution of sexual size dimorphism.</p

    Interspecific Variation in Seasonal Migration and Brumation Behavior in Two Closely Related Species of Treefrogs

    Get PDF
    Most amphibians migrate between flooded habitats for breeding and dry habitats for non-breeding activities, however, differences in closely related species may highlight divergent evolutionary histories. Through field surveys, Harmonic Direction Finder tracking and laboratory behavioral experiments during the wintering season, we demonstrated differences in seasonal migration and hibernation habitats between Dryophytes suweonensis and D. japonicus. We found that D. japonicus migrated toward forests for overwintering and then back to rice paddies for breeding in spring. By contrast, D. suweonensis was found to hibernate buried in the vicinity of rice paddies, its breeding habitat. We also found that the difference in migrating behavior matched with variation in microhabitat use during brumation and hibernation between the two species. Our findings highlight different ecological requirements between the two species, which may result from their segregated evolutionary histories, with speciation potentially linked to species use of a new breeding habitat. Additionally, the use of rice paddies for both breeding and hibernation may contribute to the endangered status of D. suweonensis because of the degradation of hibernation sites in winter

    Structural network heterogeneities and network dynamics: a possible dynamical mechanism for hippocampal memory reactivation

    Full text link
    The hippocampus has the capacity for reactivating recently acquired memories [1-3] and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces [4-11]. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters [12,13].Comment: 16 pages, 5 figure

    Evolution of switchable aposematism: insights from individual-based simulations

    Get PDF
    Some defended prey animals can switch on their normally hidden aposematic signals. This switching may occur in reaction to predators&apos; approach (pre-attack signals) or attack (post-attack signals). Switchable aposematism has been relatively poorly studied, but we can expect that it might bring a variety of benefits to an aposmetic organism. First, the switching could startle the predators (deimatism). Second, it could facilitate aversive learning. Third, it could minimize exposure or energetic expense, as the signal can be switched off. These potential benefits might offset costs of developing, maintaining and utilizing the switchable traits. Here we focused on the third benefit of switchability, the cost-saving aspect, and developed an individual-based computer simulation of predators and prey. In 88,128 model runs, we observed evolution of permanent, pre-attack, or post-attack aposematic signals of varying strength. We found that, in general, the pre-attack switchable aposematism may require moderate predator learning speed, high basal detectability, and moderate to high signal cost. On the other hand, the post-attack signals may arise under slow predator learning, low basal detectability and high signal cost. When predator population turnover is fast, it may lead to evolution of post-attack aposematic signals that are not conforming to the above tendency. We also suggest that a high switching cost may exert different selection pressure on the pre-attack than the post-attack switchable strategies. To our knowledge, these are the first theoretical attempts to systematically explore the evolution of switchable aposematism relative to permanent aposematism in defended prey. Our simulation model is capable of addressing additional questions beyond the scope of this article, and we open the simulation software, program manual and source code for free public use. © 2020 Song et al.1

    Producer-scrounger roles and joining based on dominance in a free-living group of Mexican jays (Aphelocoma ultramarina

    Get PDF
    Summary While foraging, animals often exploit group members to obtain food. One way to describe this behaviour is with the producer-scrounger (PS) model, where scroungers use social interaction to obtain food discovered by producers. Mexican jays (Aphelocoma ultramarina) are a groupforaging species with a linear dominance hierarchy. We studied interactions in a free-living foraging group to determine (1) if foraging interactions can be explained with the PS model, (2) if these roles are consistent and (3) if dominance or relatedness affects joining frequency. We recorded board-flipping, eating, and joining events during sets of feeding trials. We show that Mexican jays use PS roles and that these roles were consistent through many trials, but might have changed between trial sets. Relatedness and frequency of joining were not correlated. Dominance influenced joining in that joining was more likely to occur between birds with a larger difference in their dominance rank. In contrast to other studies, our results suggest that this effect is mediated through joiner preference. Scroungers preferentially joined birds of lower dominance rank and high search activity. Producers with these qualities had fewer eating events with full access to seeds, suggesting that scrounging exacts a cost on producers

    Microhabitat segregation among three co-existing species of grasshoppers on a rural meadow near Seoul, South Korea

    Get PDF
    Microhabitat segregation among grasshopper species in Asia has not been well studied. We determined the differences in the use of substrates by three common North East Asian grasshopper species co-existing on a natural meadow near Seoul, South Korea. While many Oedaleus infernalis individuals were found on the ground, Acrida cinerea and Atractomorpha lata were usually observed on plants. Acrida cinerea was mostly observed on the grass Zoysia japonica (Poaceae) and Atractomorpha lata was mostly found on plants from the family Asteraceae. This is the first study to provide quantitative information about microhabitat differences among some common grasshoppers in rural habitats of continental North East Asia. Future studies should focus on determining the mechanisms that produce such ecological segregation

    Correlation between temperature and the timing of arrival of geese in South Korea

    Get PDF
    The impact of climate change on animals has been globally documented. Especially, migration of birds has been extensively monitored as migratory birds are susceptible to any changes occurring both on breeding grounds and on wintering grounds. However, in contrast to spring migration, the patterns and the factors for autumn migration have not been well documented. In this study, we investigated the relationship with climate condition and the first arrival dates (FADs) of bean geese (Anser fabalis) and white-fronted geese (A. albifrons), the representative group of wintering birds in South Korea, using the data collected by Korean Meteorological Association during 1995–2016. Average temperature of September in wintering grounds has increased, and the FADs of the geese have advanced over the 22 years. Even when the influence of autumn temperature was statistically controlled for, the FADs of the geese have significantly advanced. This suggests that warming has hastened the completion of breeding, which speeded up the arrival of the geese at the wintering grounds. In order to assess the effect of climate condition on the arrival of the wintering migratory birds such as the geese in more detail, extensive data collection over many sampling sites and with long-term monitoring is needed.Funding was provided from NRF grants 2017R1D1A1B03029300 and 2018R1A6A3A01012729

    Water striders adjust leg movement speed to optimize takeoff velocity for their morphology

    Get PDF
    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators&apos; attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.1

    Trails of ants converge or diverge through lens-shaped impediments, resembling principles of optics

    Get PDF
    Analogies across disciplines often indicate the existence of universal principles such as optimization, while the underlying proximate mechanisms may differ. It was reported recently that trails of ants refract at the border of substrates, on which walking speeds differ. This phenomenon is analogous to the travel-time-minimizing routes of light refracting at the borders between different media. Here, we further demonstrate that ant tracks converge or diverge across lens-shaped impediments similar to light rays through concave or convex optical lenses. The results suggest that the optical principle of travel time reduction may apply to ants. We propose a simple mathematical model that assumes nonlinear positive feedback in pheromone accumulation. It provides a possible explanation of the observed similarity between ant behavior and optics, and it is the first quantitative theoretical demonstration that pheromone-based proximate mechanisms of trail formation may produce this similarity. However, the future detailed empirical observations of ant behavior on impediment edges during the process of pheromone trail formation are needed in order to evaluate alternative explanations for this similarity. © 2020, The Author(s).1

    Affordable method of video recording for ecologists and citizen-science participants

    Get PDF
    Abstract Observations and video documentation of interactions between animals living in dens, cavities, and other enclosed spaces are difficult, but they play an important role in field biology, ecology, and conservation. For example, bird parents visiting nests and feeding their nestlings may provide crucial information for testing of ecological hypotheses and may easily attract attention of participants of citizen-science ecological and conservation projects. Because of the nest concealment of cavity-nesting birds, their behaviors in the nest can only be studied by using video surveillance. Professional wildlife surveillance systems are extremely expensive. Here, we describe an inexpensive video setup that can be constructed with relatively little effort and is more affordable than any previously described system. We anticipate that the relatively low cost of about 250 USD for a battery-operated system is an important feature for citizen-science type of projects and for applications in heavily populated areas where the potential for theft and vandalism may be high. Based on our experiences, we provide methodological advice on practical aspects of using this system in the field for ecological research on birds. We highlight the low cost, easiness of construction, and potential availability to a large number of observers taking part in wildlife monitoring projects, and we offer technical help to participants of such research projects
    corecore