10 research outputs found

    Interaction of NO-sensitive guanylyl cyclase with Src-like kinases

    Get PDF
    Poster presentation NO-sensitive guanylyl cyclases (soluble guanylyl cyclase, sGC) are among the key regulators of intracellular cGMP concentration. The mechanisms underlying NO-mediated activation of sGC are quite well understood, however, little is known about the fine-tuning of sGC activity through alternative mechanisms such as protein phosphorylation. Several reports have demonstrated the reversible phosphorylation of sGC on serine/threonine residues, and it has been speculated, though not experimentally proven, that sGC might also be phosphorylated on tyrosine residues. Using broad-spectrum phosphatase inhibitors we were able to demonstrate tyrosine phosphorylation at Tyr192 of the beta 1 subunit of human sGC in COS1 cells. This residue forms part of a sequence segment (YEDL) representing a preferential binding site for SH2 domains of Src-like kinases. Pull-down assays and co-immunoprecipitation experiments showed that Src can indeed bind via its SH2 domain to pTyr192 of beta 1 indicating that tyrosine phosphorylation of sGC may be followed by recruitment of Src-like kinases to the phosphorylated beta 1 subunit. In support of this hypothesis, immunofluorescence studies showed a colocalization of overexpressed sGC and Src at the plasma membrane of COS1 and Hela cells. Together, our results point to an unexpected crosstalk between tyrosine kinase pathway(s) and the NO/cGMP signalling cascade which may result in translocation of the predominantly cytosolic sGC to the cytosolic face of the plasma membrane

    Tyrosine phosphorylation of NO-sensitive guanylyl cyclase

    Get PDF
    Poster presentation: NO-sensitive guanylyl cyclases (GC) are the principal receptors for nitric oxide (NO) and convert GTP into the second messenger cGMP. We showed that GC is prone to tyrosine phosphorylation in COS1 cells overexpressing the human holoenzyme. Similar results were obtained in PC12 cells and in rat aortic tissue slices. The major phosphorylation site was mapped to position 192 in the regulatory domain of the beta1 subunit. Tyrosine phosphorylation of GC was reduced in the presence of the inhibitors PP1 and PP2 indicating that Src-like kinases are critically involved in phosphorylation. Moreover, co-immunoprecipitation experiments revealed an interaction between Src and GC. To further analyse the relevance of this posttranslational modification we generated a phospho-specific antibody raised against pTyr192. This antibody clearly distinguishes between phosphorylated and non-phosphorylated GC and may be a powerful tool to analyse the subcellular localisation of the phosphorylated enzyme

    Nitric oxide-independent vasodilator rescues heme-oxidized soluble guanylate cyclase from proteosomal degradation

    Get PDF
    Background: Nitric oxide (NO) is an essential vasodilator. In vascular diseases, oxidative stress attenuates NO signaling by both chemical scavenging of free NO and oxidation and down-regulation of its major intracellular receptor, the alpha/beta heterodimeric heme-containing soluble guanylate cyclase (sGC). Oxidation can also induce loss of sGC's heme and responsiveness to NO. Results: sGC activators such as BAY 58-2667 bind to oxidized/heme-free sGC and reactivate the enzyme to exert disease-specific vasodilation. Here we show that oxidation-induced down-regulation of sGC protein extends to isolated blood vessels. Mechanistically, degradation was triggered through sGC ubiquitination and proteasomal degradation. The heme-binding site ligand, BAY 58-2667, prevented sGC ubiquitination and stabilized both alpha and beta subunits. Conclusion: Collectively, our data establish oxidation-ubiquitination of sGC as a modulator of NO/cGMP signaling and point to a new mechanism of action for sGC activating vasodilators by stabilizing their receptor, oxidized/heme-free sGC

    Charakterisierung der Tyrosinphosphorylierung der NO-sensitiven Guanylat-Cyclase und des Interaktionspartners AGAP1

    No full text
    Die NO-sensitive Guanylat-Cyclase (GC), der wichtigste physiologische Rezeptor für Stickstoffmonoxid (NO), ist an der Produktion des sekundären Botenstoffes cGMP beteiligt. Die GC ist ein obligates Heterodimer bestehend aus je einer alpha- und einer beta-Untereinheit, wobei die alphabeta-Isoform am häufigsten vorkommt. Die Bindung von NO an die prosthetische Häm-Gruppe der beta-Untereinheit führt zur Aktivierung des Enzyms. Das dabei gebildete cGMP bindet an Effektorproteine wie Proteinkinase G, Phosphodiesterasen und Ionenkanäle und vermittelt dadurch seine zellulären Effekte. Der Mechanismus der NO-induzierten Aktivierung der GC ist weitgehend bekannt; hingegen ist bisher nur wenig über alternative Regulationsmodi der GC wie zum Beispiel Phosphorylierung, Protein-Protein-Interaktion oder Translokation bekannt. Aufgabe der vorliegenden Arbeit war es daher, die Phosphorylierung der GC durch Tyrosinkinasen der Src-Familie sowie den GC-Interaktionspartner AGAP1 zu untersuchen. Die Tyrosinphosphorylierung der GC konnte in Gegenwart von Protein-Tyrosinphosphatase-Inhibitoren wie Pervanadat erstmals in endogenen Zellen wie Thrombozyten und vaskulären glatten Muskelzellen nachgewiesen werden. Untersuchungen mit dem Inhibitor SU6656 zeigten, dass Kinasen der Src-Familie an der Pervanadat-induzierten Phosphorylierung beteiligt sind. In Überexpressionssystemen wurde die GC durch Src und Fyn phosphoryliert, wobei Src hier deutlich effektiver war. Zudem kann Src die beta-Untereinheit der GC in vitro direkt phosphorylieren. Die Verwendung von Kinase-knockout-Zellen zeigte, dass neben Src auch andere Kinasen die GC-Phosphorylierung vermitteln können. Src interagiert mit dem Holoenzym der GC, wenn der Tyrosinrest 192 der beta-Untereinheit phosphoryliert ist. Hierbei bindet Src über seine SH2-Domäne an die GC. Mit der GC assoziiertes Src kann mindestens einen weiteren Tyrosinrest der beta-Untereinheit phosphorylieren. Ferner weisen einige Resultate auf eine zweite Bindungsstelle hin, die unabhängig von Tyrosin-192 und der SH2-Domäne ist. Experimente zur Lokalisation deuten auf eine möglicherweise durch Src vermittelte Translokation der Guanylat-Cyclase zur Plasmamembran hin. Ein weiterer Teil dieser Arbeit befasste sich mit AGAP1, einem etablierten Interaktionspartner der GC. AGAP1 ist am endosomalen Vesikeltransport beteiligt, indem es die Aktivität von Arf-GTPasen Phospholipid-abhängig stimulieren kann. In dieser Arbeit zeigte sich, dass AGAP1 über seinen N-Terminus sowie einen oder mehrere Segmente des C-Terminus dimerisiert. Außerdem kann AGAP1 über seine Pleckstrin-Homologie-Domäne an Phosphatidylinositol- Monophosphate und Phosphatidylinositol 3,4-bisphosphat binden. Zusammenfassend betrachtet zeigt diese Arbeit neue potentielle Regulationsmechanismen der NO-sensitiven Guanylat-Cyclase durch Tyrosinphosphorylierung und durch die Interaktion mit der Tyrosinkinase Src und dem Multidomänen-Protein AGAP1 auf. Hierbei wird deutlich, dass der NO/cGMP-Signalweg, die Tyrosinphosphorylierungs-Kaskaden und der Vesikeltransport regulatorisch ineinander greifen.NO-sensitive guanylyl cyclase (GC) is the most important physiological receptor for nitric oxide (NO) and is responsible for production of the secondary messenger cyclic GMP (cGMP). GC is an obligate heterodimer consisting of alpha and beta subunits, with alphabeta as the most abundant isoform. Binding of NO to the prosthetic heme group leads to the activation of the enzyme. Cellular effects of cGMP are mediated by effector proteins such as cGMP-dependent protein kinases, phosphodiesterases and cGMP-gated ion channels. The mechanism underlying the NO-induced activation of GC in vitro has been studied extensively. However, there is little known about the regulation of GC in vivo, for example by posttranslational modifications, subcellular localization or protein-protein-interaction. The major aims of this thesis were to characterize phosphorylation of the alphabeta isoform by tyrosine kinases of the Src family and the GC interacting protein AGAP1. Tyrosine phosphorylation of NO-sensitive guanylate cyclase was shown in rat thrombocytes and rat vascular smooth muscle cells after inhibition of protein tyrosine phosphatases by pervanadate. The role of Src family kinases for the pervanadate-induced phosphorylation was confirmed by inhibition through SU6656. GC was also phosphorylated by Fyn and Src in overexpression systems, with the latter being more effective. In addition, recombinant Src also phosphorylated the beta subunit of GC in vitro. In cells deficient for Src, Yes and Fyn, the beta subunit was still phosphorylated in the presence of pervanadate indicating that kinases other than Src and Fyn can phosphorylate GC as well. The present work also demonstrated that Src interacts with the GC holoenzyme via its SH2 domain. This is mediated by binding to phosphorylated tyrosine 192 of the beta subunit. Following binding to GC, additional tyrosine residues were phosphorylated by Src. Preliminary experiments revealed that a second binding site independent of tyrosine 192 and the SH2 domain may exist. Colocalization studies point to a Src mediated translocation of the NO-sensitive guanylate cyclase to the plasma membrane. A second aspect of this thesis addressed the role of AGAP1, an established protein interaction partner of GC. It could be shown that AGAP1 forms homodimers through both its N- and C-terminal regions. Notably, AGAP1 is involved in the transport of endosomal vesicles by stimulating the GTPase activity of Arf-GTPases, dependent on the presence of phospholipids. This work demonstrates for the first time that the pleckstrin homology domain of AGAP1 can directly bind to phospholipids, with phosphatidylinositol monophosphates and phosphatidylinositol 3,4-bisphosphate showing strongest binding. Taken together, this thesis suggests that tyrosine phosphorylation as wells as interaction with the tyrosine kinase Src and the multidomain protein AGAP1 may represent new mechanisms regulating NO-sensitive guanylate cyclase. Thus, it becomes apparent that crosstalk between the NO/cGMP pathway, tyrosine phosphorylation and vesicle transport may exist

    Reactive oxygen species induce tyrosine phosphorylation of and Src kinase recruitment to NO-sensitive guanylyl cyclase

    No full text
    Soluble guanylyl cyclase (sGC) is the major cytosolic receptor for nitric oxide (NO) that converts GTP into the second messenger cGMP in a NO-dependent manner. Other factors controlling this key enzyme are intracellular proteins such as Hsp90 and PSD95, which bind to sGC and modulate its activity, stability, and localization. To date little is known about the effects of posttranslational modifications of sGC, although circumstantial evidence suggests that reversible phosphorylation may contribute to sGC regulation. Here we demonstrate that inhibitors of protein-tyrosine phosphatases such as pervanadate and bisperoxo(1,10-phenanthroline)oxovanadate(V) as well as reactive oxygen species such as H2O2 induce specific tyrosine phosphorylation of the β1 but not of the α1 subunit of sGC. Tyrosine phosphorylation of sGCβ1 is also inducible by pervanadate and H2O2 in intact PC12 cells, rat aortic smooth muscle cells, and in rat aortic tissues, indicating that tyrosine phosphorylation of sGC may also occur in vivo. We have mapped the major tyrosine phosphorylation site to position 192 of β1, where it forms part of a highly acidic phospho-acceptor site for Src-like kinases. In the phosphorylated state Tyr(P)-192 exposes a docking site for SH2 domains and efficiently recruits Src and Fyn to sGCβ1, thereby promoting multiple phosphorylation of the enzyme. Our results demonstrate that sGC is subject to tyrosine phosphorylation and interaction with Src-like kinases, revealing an unexpected cross-talk between the NO/cGMP and tyrosine kinase signaling pathways at the level of sGC

    AGAP1, a novel binding partner of nitric oxide-sensitive guanylyl cyclase

    No full text
    Nitric oxide (NO)-sensitive soluble guanylyl cyclase (sGC) is the major cytosolic receptor for NO, catalyzing the conversion of GTP to cGMP. In a search for proteins specifically interacting with human sGC, we have identified the multidomain protein AGAP1, the prototype of an ArfGAP protein with a GTPase-like domain, Ankyrin repeats, and a pleckstrin homology domain. AGAP1 binds through its carboxyl terminal portion to both the α1 and β1 subunits of sGC. We demonstrate that AGAP1 mRNA and protein are co-expressed with sGC in human, murine, and rat cells and tissues and that the two proteins interact in vitro and in vivo. We also show that AGAP1 is prone to tyrosine phosphorylation by Src-like kinases and that tyrosine phosphorylation potently increases the interaction between AGAP1 and sGC, indicating that complex formation is modulated by reversible phosphorylation. Our findings may hint to a potential role of AGAP1 in integrating signals from Arf, NO/cGMP, and tyrosine kinase signaling pathways
    corecore