228 research outputs found

    Why Silver Deposition is so Fast: Solving the Enigma of Metal Deposition

    Get PDF
    A perfect match: Silver deposition is one of the fastest electrochemical reactions, even though the Ag+ ion loses more than 5 eV solvation energy in the process. This phenomenon, an example of the enigma of metal deposition, was investigated by a combination of MD simulations, DFT, and specially developed theory. At the surface, the Ag+ ion experiences a strong interaction with the sp band of silver, which catalyzes the reaction.Fil: Pinto, Leandro M. C.. Universidade Estadual Paulista Julio de Mesquita Filho. Facultad de Filosofia E Ciencias-campus de Marilia; Brasil. Universitat Ulm; AlemaniaFil: Spohr, Eckhard. Universitat Duisburg - Essen; AlemaniaFil: Quaino, Paola Monica. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada E Ingeniería Electroquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe; ArgentinaFil: Santos, Elizabeth del Carmen. Universitat Ulm; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto de Física "Enrique Gaviola"; ArgentinaFil: Schmickler, Wolfgang. Institute Of Theoretical Chemistry; Alemania. Universitat Ulm; Alemani

    The landscape of antimicrobial resistance in the neonatal and multi-host pathogen group B Streptococcus: review from a One Health perspective

    Get PDF
    Group B Streptococcus (GBS) stands out as a major agent of pediatric disease in humans, being responsible for 392,000 invasive disease cases and 91,000 deaths in infants each year across the world. Moreover, GBS, also known as Streptococcus agalactiae, is an important agent of infections in animal hosts, notably cattle and fish. GBS population structure is composed of multiple clades that differ in virulence, antimicrobial resistance (AMR), and niche adaptation; however, there is growing evidence of interspecies transmission, both from evolutionary analysis and from disease investigations. The prevention of GBS infections through vaccination is desirable in humans as well as animals because it reduces the burden of GBS disease and reduces our reliance on antimicrobials, and the risk of adverse reactions or selection for AMR. In this perspective article, we navigate through the landscape of AMR in the pediatric and multi-host pathogen GBS under the One Health perspective and discuss the use of antimicrobials to control GBS disease, the evolution of AMR in the GBS population, and the future perspectives of resistant GBS infections in the post-pandemic era

    Evolutionary and pulsational properties of white dwarf stars

    Get PDF
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Algas planctônicas de um lago artificial do Jardim Botânico Chico Mendes, Goiânia, Goiás: florística e algumas considerações ecológicas

    Full text link
    corecore