2,595 research outputs found

    (1+1)-Dimensional Yang-Mills Theory Coupled to Adjoint Fermions on the Light Front

    Get PDF
    We consider SU(2) Yang-Mills theory in 1+1 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge group is actually SU(2)/Z_2, which possesses nontrivial topology. In particular, there are two distinct topological sectors and the physical vacuum state has a structure analogous to a \theta vacuum. We show how this feature is realized in light-front quantization, with periodicity conditions used to regulate the infrared and treating the gauge field zero mode as a dynamical quantity. We find expressions for the degenerate vacuum states and construct the analog of the \theta vacuum. We then calculate the bilinear condensate in the model. We argue that the condensate does not affect the spectrum of the theory, although it is related to the string tension that characterizes the potential between fundamental test charges when the dynamical fermions are given a mass. We also argue that this result is fundamentally different from calculations that use periodicity conditions in x^1 as an infrared regulator.Comment: 20 pages, Revte

    Renormalization of Tamm-Dancoff Integral Equations

    Full text link
    During the last few years, interest has arisen in using light-front Tamm-Dancoff field theory to describe relativistic bound states for theories such as QCD. Unfortunately, difficult renormalization problems stand in the way. We introduce a general, non-perturbative approach to renormalization that is well suited for the ultraviolet and, presumably, the infrared divergences found in these systems. We reexpress the renormalization problem in terms of a set of coupled inhomogeneous integral equations, the ``counterterm equation.'' The solution of this equation provides a kernel for the Tamm-Dancoff integral equations which generates states that are independent of any cutoffs. We also introduce a Rayleigh-Ritz approach to numerical solution of the counterterm equation. Using our approach to renormalization, we examine several ultraviolet divergent models. Finally, we use the Rayleigh-Ritz approach to find the counterterms in terms of allowed operators of a theory.Comment: 19 pages, OHSTPY-HEP-T-92-01

    Vacuum Structure of Two-Dimensional Gauge Theories on the Light Front

    Get PDF
    We discuss the problem of vacuum structure in light-front field theory in the context of (1+1)-dimensional gauge theories. We begin by reviewing the known light-front solution of the Schwinger model, highlighting the issues that are relevant for reproducing the θ\theta-structure of the vacuum. The most important of these are the need to introduce degrees of freedom initialized on two different null planes, the proper incorporation of gauge field zero modes when periodicity conditions are used to regulate the infrared, and the importance of carefully regulating singular operator products in a gauge-invariant way. We then consider SU(2) Yang-Mills theory in 1+1 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge group is actually SU(2)/Z2/Z_2, which possesses nontrivial topology. In particular, there are two topological sectors and the physical vacuum state has a structure analogous to a θ\theta vacuum. We formulate the model using periodicity conditions in x±x^\pm for infrared regulation, and consider a solution in which the gauge field zero mode is treated as a constrained operator. We obtain the expected Z2Z_2 vacuum structure, and verify that the discrete vacuum angle which enters has no effect on the spectrum of the theory. We then calculate the chiral condensate, which is sensitive to the vacuum structure. The result is nonzero, but inversely proportional to the periodicity length, a situation which is familiar from the Schwinger model. The origin of this behavior is discussed.Comment: 29 pages, uses RevTeX. Improved discussion of the physical subspace generally and the vacuum states in particular. Basic conclusions are unchanged, but some specific results are modifie

    Lyapunov exponent of the random Schr\"{o}dinger operator with short-range correlated noise potential

    Full text link
    We study the influence of disorder on propagation of waves in one-dimensional structures. Transmission properties of the process governed by the Schr\"{o}dinger equation with the white noise potential can be expressed through the Lyapunov exponent γ\gamma which we determine explicitly as a function of the noise intensity \sigma and the frequency \omega. We find uniform two-parameter asymptotic expressions for γ\gamma which allow us to evaluate γ\gamma for different relations between \sigma and \omega. The value of the Lyapunov exponent is also obtained in the case of a short-range correlated noise, which is shown to be less than its white noise counterpart.Comment: 20 pages, 4 figure

    Inversion formula and Parsval theorem for complex continuous wavelet transforms studied by entangled state representation

    Full text link
    In a preceding Letter (Opt. Lett. 32, 554 (2007)) we have proposed complex continuous wavelet transforms (CCWTs) and found Laguerre--Gaussian mother wavelets family. In this work we present the inversion formula and Parsval theorem for CCWT by virtue of the entangled state representation, which makes the CCWT theory complete. A new orthogonal property of mother wavelet in parameter space is revealed.Comment: 4 pages no figur

    On inversions and Doob hh-transforms of linear diffusions

    Full text link
    Let XX be a regular linear diffusion whose state space is an open interval ERE\subseteq\mathbb{R}. We consider a diffusion XX^* which probability law is obtained as a Doob hh-transform of the law of XX, where hh is a positive harmonic function for the infinitesimal generator of XX on EE. This is the dual of XX with respect to h(x)m(dx)h(x)m(dx) where m(dx)m(dx) is the speed measure of XX. Examples include the case where XX^* is XX conditioned to stay above some fixed level. We provide a construction of XX^* as a deterministic inversion of XX, time changed with some random clock. The study involves the construction of some inversions which generalize the Euclidean inversions. Brownian motion with drift and Bessel processes are considered in details.Comment: 19 page

    Electromagnetic Fields Produced by Moving Sources in a Curved Beam Pipe

    Full text link
    A new geometrical perturbation scheme is developed in order to calculate the electromagnetic fields produced by charged sources in prescribed motion moving in a non-straight perfectly conducting beam pipe. The pipe is regarded as a perturbed infinitely long hollow right-circular cylinder. The perturbation maintains the pipe's circular cross-section while deforming its axis into a planar space-curve with, in general, non-constant curvature. Various charged source models are considered including a charged bunch and an off-axis point particle. In the ultra-relativistic limit this permits a calculation of the longitudinal wake potential in terms of powers of the product of the pipe radius and the arbitrarily varying curvature of the axial space-curve. Analytic expressions to leading order are presented for beam pipes with piecewise defined constant curvature modelling pipes with straight segments linked by circular arcs of finite length. The language of differential forms is used throughout and to illustrate the power of this formalism a pedagogical introduction is developed by deriving the theory ab-initio from Maxwell's equations expressed intrinsically as a differential system on (Minkowski) spacetime.Comment: 43pages, 7figure

    On Zero Modes and the Vacuum Problem -- A Study of Scalar Adjoint Matter in Two-Dimensional Yang-Mills Theory via Light-Cone Quantisation

    Get PDF
    SU(2) Yang-Mills Theory coupled to massive adjoint scalar matter is studied in (1+1) dimensions using Discretised Light-Cone Quantisation. This theory can be obtained from pure Yang-Mills in 2+1 dimensions via dimensional reduction. On the light-cone, the vacuum structure of this theory is encoded in the dynamical zero mode of a gluon and a constrained mode of the scalar field. The latter satisfies a linear constraint, suggesting no nontrivial vacua in the present paradigm for symmetry breaking on the light-cone. I develop a diagrammatic method to solve the constraint equation. In the adiabatic approximation I compute the quantum mechanical potential governing the dynamical gauge mode. Due to a condensation of the lowest omentum modes of the dynamical gluons, a centrifugal barrier is generated in the adiabatic potential. In the present theory however, the barrier height appears too small to make any impact in this odel. Although the theory is superrenormalisable on naive powercounting grounds, the removal of ultraviolet divergences is nontrivial when the constrained mode is taken into account. The open aspects of this problem are discussed in detail.Comment: LaTeX file, 26 pages. 14 postscript figure

    Variational Calculation of the Effective Action

    Get PDF
    An indication of spontaneous symmetry breaking is found in the two-dimensional λϕ4\lambda\phi^4 model, where attention is paid to the functional form of an effective action. An effective energy, which is an effective action for a static field, is obtained as a functional of the classical field from the ground state of the hamiltonian H[J]H[J] interacting with a constant external field. The energy and wavefunction of the ground state are calculated in terms of DLCQ (Discretized Light-Cone Quantization) under antiperiodic boundary conditions. A field configuration that is physically meaningful is found as a solution of the quantum mechanical Euler-Lagrange equation in the J0J\to 0 limit. It is shown that there exists a nonzero field configuration in the broken phase of Z2Z_2 symmetry because of a boundary effect.Comment: 26 pages, REVTeX, 7 postscript figures, typos corrected and two references adde

    Vacuum Structures of Supersymmetric Yang-Mills Theories in 1+11+1 Dimensions

    Get PDF
    Vacuum structures of supersymmetric (SUSY) Yang-Mills theories in 1+11+1 dimensions are studied with the spatial direction compactified. SUSY allows only periodic boundary conditions for both fermions and bosons. By using the Born-Oppenheimer approximation for the weak coupling limit, we find that the vacuum energy vanishes, and hence the SUSY is unbroken. Other boundary conditions are also studied, especially the antiperiodic boundary condition for fermions which is related to the system in finite temperatures. In that case we find for gaugino bilinears a nonvanishing vacuum condensation which indicates instanton contributions.Comment: LaTeX file, 25 page, 3 eps figure, some references adde
    corecore