4,474 research outputs found

    (1+1)-Dimensional Yang-Mills Theory Coupled to Adjoint Fermions on the Light Front

    Get PDF
    We consider SU(2) Yang-Mills theory in 1+1 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge group is actually SU(2)/Z_2, which possesses nontrivial topology. In particular, there are two distinct topological sectors and the physical vacuum state has a structure analogous to a \theta vacuum. We show how this feature is realized in light-front quantization, with periodicity conditions used to regulate the infrared and treating the gauge field zero mode as a dynamical quantity. We find expressions for the degenerate vacuum states and construct the analog of the \theta vacuum. We then calculate the bilinear condensate in the model. We argue that the condensate does not affect the spectrum of the theory, although it is related to the string tension that characterizes the potential between fundamental test charges when the dynamical fermions are given a mass. We also argue that this result is fundamentally different from calculations that use periodicity conditions in x^1 as an infrared regulator.Comment: 20 pages, Revte

    Stability and Boundedness of Solutions to Some Non-autonomous Multidimensional Nonlinear Systems

    Full text link
    Assessment of degree of boundedness and stability of multidimensional nonlinear systems with time-dependent and especially nonperiodic coefficients is an important applied problem which has no adequate resolution yet. Most of the known techniques mostly provide computationally intensive and conservative stability criteria in this area which frequently fail to gage the degrees of stability and especially boundedness of solutions to the corresponding systems. Recently, we outline a new approach to this task resting on analysis of solutions to a scalar auxiliary equation bounding from above time-histories of the norms of solutions to the original systems. This paper develops a new technique casting the auxiliary equation in a simplified form which, in turn, amplifies its application domain and reduces the computational hamper of our prior approach. Consequently, we develop novel boundedness and stability criteria and estimated the trapping and stability regions for some multidimensional nonlinear systems with time - dependent coefficients. This let us to assess in target simulations the degree of boundedness and stability of multidimensional nonlinear and non-autonomous systems which were intractable to our prior methodolog

    A solution to the fermion doubling problem for supersymmetric theories on the transverse lattice

    Full text link
    Species doubling is a problem that infects most numerical methods that use a spatial lattice. An understanding of species doubling can be found in the Nielsen-Ninomiya theorem which gives a set of conditions that require species doubling. The transverse lattice approach to solving field theories, which has at least one spatial lattice, fails one of the conditions of the Nielsen-Ninomiya theorem nevertheless one still finds species doubling for the standard Lagrangian formulation of the transverse lattice. We will show that the Supersymmetric Discrete Light Cone Quantization (SDLCQ) formulation of the transverse lattice does not have species doubling.Comment: 4 pages, v2: a reference and comments added, the version to appear in Phys. Rev.

    Effects of a fundamental mass term in two-dimensional super Yang-Mills theory

    Get PDF
    We show that adding a vacuum expectation value to a gauge field left over from a dimensional reduction of three-dimensional pure supersymmetric Yang-Mills theory generates mass terms for the fundamental fields in the two-dimensional theory while supersymmetry stays intact. This is similar to the adjoint mass term that is generated by a Chern-Simons term in this theory. We study the spectrum of the two-dimensional theory as a function of the vacuum expectation value and of the Chern-Simons coupling. Apart from some symmetry issues a straightforward picture arises. We show that at least one massless state exists if the Chern-Simons coupling vanishes. The numerical spectrum separates into (almost) massless and very heavy states as the Chern-Simons coupling grows. We present evidence that the gap survives the continuum limit. We display structure functions and other properties of some of the bound states.Comment: 17 pp., 10 figs; substantially revised version to be published in Phys. Rev.

    Comparison of automated nucleic acid extraction methods for the detection of cytomegalovirus DNA in fluids and tissues

    Get PDF
    Testing for cytomegalovirus (CMV) DNA is increasingly being used for specimen types other than plasma or whole blood. However, few studies have investigated the performance of different nucleic acid extraction protocols in such specimens. In this study, CMV extraction using the Cell-free 1000 and Pathogen Complex 400 protocols on the QIAsymphony Sample Processing (SP) system were compared using bronchoalveolar lavage fluid (BAL), tissue samples, and urine. The QIAsymphonyAssay Set-up (AS) system was used to assemble reactions using artus CMV PCR reagents and amplification was carried out on the Rotor-Gene Q. Samples from 93 patients previously tested for CMV DNA and negative samples spiked with CMV AD-169 were used to evaluate assay performance. The Pathogen Complex 400 protocol yielded the following results: BAL, sensitivity 100% (33/33), specificity 87% (20/23); tissue, sensitivity 100% (25/25), specificity 100% (20/20); urine, sensitivity 100% (21/21), specificity 100% (20/20). Cell-free 1000 extraction gave comparable results for BAL and tissue, however, for urine, the sensitivity was 86% (18/21) and specimen quantitation was inaccurate. Comparative studies of different extraction protocols and DNA detection methods in body fluids and tissues are needed, as assays optimized for blood or plasma will not necessarily perform well on other specimen types

    Quantum Mechanics of Dynamical Zero Mode in QCD1+1QCD_{1+1} on the Light-Cone

    Get PDF
    Motivated by the work of Kalloniatis, Pauli and Pinsky, we consider the theory of light-cone quantized QCD1+1QCD_{1+1} on a spatial circle with periodic and anti-periodic boundary conditions on the gluon and quark fields respectively. This approach is based on Discretized Light-Cone Quantization (DLCQ). We investigate the canonical structures of the theory. We show that the traditional light-cone gauge A=0A_- = 0 is not available and the zero mode (ZM) is a dynamical field, which might contribute to the vacuum structure nontrivially. We construct the full ground state of the system and obtain the Schr\"{o}dinger equation for ZM in a certain approximation. The results obtained here are compared to those of Kalloniatis et al. in a specific coupling region.Comment: 19 pages, LaTeX file, no figure
    corecore