1 research outputs found

    Ni-noble metal bimetallic catalysts for improved low temperature CO2 methanation

    Get PDF
    Bimetallic nickel-noble metal catalysts with a low noble metal loading (1 wt% of Ru, Pt, Rh, Pd, or Ir) supported on Pr-doped CeO2 were comparatively evaluated regarding their CO2 methanation catalytic performance. Ru was the sole noble metal phase that could dramatically promote the catalytic activity of the corresponding monometallic catalyst, whereas the incorporation of the other noble metals either retained (Pt and Ir) or worsened (Rh and Pd) the catalytic performance. The best–performing RuNi bimetallic catalyst maintained around 80 % CO2 conversion and 99.5 % CH4 selectivity at 325 °C during 50 h of operation. Ru was found to be well dispersed along the support (as single atoms or small clusters), while a small part of it was also dispersed atop the medium-sized Ni nanoparticles. Its promoting ability was attributed to the improved metal dispersion, catalyst reducibility, moderate basicity and provision of additional active sites for CO2 and H2 dissociation, while DFT analysis evidenced that a Ru single atom atop a Ni cluster/ small particle is the structure that is most favorable towards the initial CO2 adsorption and dissociation.NDC and MAG acknowledge support of this work by the project “Development of new innovative low carbon energy technologies to improve excellence in the Region of Western Macedonia” (MIS 5047197), which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund). AIT thanks the Hellenic Foundation for Research and Innovation (HFRI) for supporting this research work under the 3rd Call for HFRI PhD Fellowships (Fellowship Number: 6033). VS acknowledges the support of ELECMI-LMA and Nanbiosis ICTSs. KP and NS acknowledge the financial support from Khalifa University through the RC2-2018-024 and the computational resources and support from high performance computing facility Almesbar at Khalifa University of Science and Technology.Peer reviewe
    corecore