8 research outputs found

    Respiration-Induced Intraorgan Deformation of the Liver: Implications for Treatment Planning in Patients Treated With Fiducial Tracking.

    Get PDF
    Stereotactic body radiation therapy is a well-tolerated modality for the treatment of primary and metastatic liver lesions, and fiducials are often used as surrogates for tumor tracking during treatment. We evaluated respiratory-induced liver deformation by measuring the rigidity of the fiducial configuration during the breathing cycle. Seventeen patients, with 18 distinct treatment courses, were treated with stereotactic body radiosurgery using multiple fiducials. Liver deformation was empirically quantified by measuring the intrafiducial distances at different phases of respiration. Data points were collected at the 0%, 50%, and 100% inspiration points, and the distance between each pair of fiducials was measured at the 3 phases. The rigid body error was calculated as the maximum difference in the intrafiducial distances. Liver disease was calculated with Child-Pugh score using laboratory values within 3 months of initiation of treatment. A peripheral fiducial was defined as within 1.5 cm of the liver edge, and all other fiducials were classified as central. For 5 patients with only peripheral fiducials, the fiducial configuration had more deformation (average maximum rigid body error 7.11 mm, range: 1.89-11.35 mm) when compared to patients with both central and peripheral and central fiducials only (average maximum rigid body error 3.36 mm, range: 0.5-9.09 mm, P = .037). The largest rigid body errors (11.3 and 10.6 mm) were in 2 patients with Child-Pugh class A liver disease and multiple peripheral fiducials. The liver experiences internal deformation, and the fiducial configuration should not be assumed to act as a static structure. We observed greater deformation at the periphery than at the center of the liver. In our small data set, we were not able to identify cirrhosis, which is associated with greater rigidity of the liver, as predictive for deformation. Treatment planning based only on fiducial localization must take potential intraorgan deformation into account

    An Evaluation of Robotic and Conventional IMRT for Prostate Cancer: Potential for Dose Escalation

    No full text
    This study compares conventional and robotic intensity modulated radiation therapy (IMRT) plans for prostate boost treatments and provides clinical insight into the strengths and weaknesses of each. The potential for dose escalation with robotic IMRT is further investigated using the "critical volume tolerance" method proposed by Roach et al. Three clinically acceptable treatment plans were generated for 10 prostate boost patients: (1) a robotic IMRT plan using fixed cones, (2) a robotic IMRT plan using the Iris variable aperture collimator, and (3) a conventional linac based IMRT (c-IMRT) plan. Target coverage, critical structure doses, homogeneity, conformity, dose fall-off, and treatment time, were compared across plans. The average bladder and rectum V75 was 17.1%, 20.0%, and 21.4%, and 8.5%, 11.9%, and 14.1% for the Iris, fixed, and c-IMRT plans, respectively. On average the conformity index (nCI) was 1.20, 1.30, and 1.46 for the Iris, fixed, and c-IMRT plans. Differences between the Iris and the c-IMRT plans were statistically significant for the bladder V75 (P= .016), rectum V75 (P= .0013), and average nCI (P =.002). Dose to normal tissue in terms of R50 was 4.30, 5.87, and 8.37 for the Iris, fixed and c-IMRT plans, respectively, with statistically significant differences between the Iris and c-IMRT (P = .0013) and the fixed and c-IMRT (P = .001) plans. In general, the robotic IMRT plans generated using the Iris were significantly better compared to c-IMRT plans, and showed average dose gains of up to 34% for a critical rectal volume of 5%

    Treatment planning system and beam data validation for the ZAP-X: A novel self-shielded stereotactic radiosurgery system

    No full text
    PURPOSE: To evaluate the treatment planning system (TPS) performance of the ZAP-X stereotactic radiosurgery (SRS) system through nondosimetric, dosimetric, and end-to-end (E2E) tests. METHODS: A comprehensive set of TPS commissioning and validation tests was developed using published guidelines. Nondosimetric validation tests included information transfer, computed tomography-magnetic resonance (CT-MR) image registration, structure/contouring, geometry, dose tools, and CT density. Dosimetric validation included comparisons between TPS and water tank/Solid Water measurements for various geometries and beam arrangements and end-to-end (E2E) tests. Patient-specific quality assurance was performed with an ion chamber in the Lucy phantom and with Gafchromic EBT3 film in the CyberKnife head phantom. RadCalc was used for independent verification of monitor units. Additional E2E tests were performed using the RPC Gamma Knife thermoluminescent dosimeter (TLD) phantom, MD Anderson SRS head phantom, and PseudoPatient gel phantom for independent absolute dose verification. RESULTS: CT-MR image registrations with known translational and rotational offsets were within tolerance (\u3c0.5 × maximum voxel dimension). Slice thickness and distance accuracy were within 0.1 mm, and volume accuracy was within 0 to 0.11 cm . Treatment planning system volume measurement uncertainty was within 0.1 to 0.4 cm . Ion chamber point-dose measurements for a single beam in a water phantom agreed to TPS-calculated values within ±4% for collimator diameters 10 to 25 mm, and ±6% for 7.5 mm, for all measured depths (7, 50, 100, 150, and 200 mm). In homogeneous Solid Water, point-dose measurements agreed to within ±4% for cones sizes 7.5 to 25 mm. With 1-cm high/low density inserts, measurements were within ±4.2% for cone sizes 10 to 25 mm. Film-based E2E using 4/5-mm cones resulted in a gamma passing rate (%GP) of 99.8% (2%/1.5 mm). Point-dose measurements in a Lucy phantom with an ion chamber using 36 beams distributed along three noncoplanar arcs agreed to within ±4% for cone sizes 10 to 25 mm. The RPC Gamma Knife TLD phantom yielded passing results with a measured-to-expected TLD dose ratio of 1.02. The MD Anderson SRS head phantom yielded passing results, with 4% TLD agreement and %GP of 95%/93% (5%/3 mm) for coronal/sagittal film planes. The RTsafe gel phantom gave %GP of \u3e95% (5%/2 mm) for all four targets. For our first 58 patients, film-based patient-specific quality assurance has resulted in an average %GP of 98.7% (range, 94-100%) at 2%/2 mm. CONCLUSIONS: Core ZAP-X features were found to be functional. On the basis of our results, point-dose and planar measurements were in agreement with TPS calculations using multiple phantoms and setup geometries, validating the ZAP-X TPS beam model for clinical use
    corecore