11 research outputs found

    Hydrodynamic Performance of an Asymmetry OWC Device Mounted on a Box-Type Breakwater

    Get PDF
    To share the construction and maintenance cost, an asymmetric oscillating water column (OWC) device integrated with a pile-fixed box-typed offshore breakwater is considered experimentally and numerically. A fully nonlinear numerical wave tank is established and validated with the open source solver OpenFOAM. The effects of the width and draft of rear box, and the incident wave height on the wave energy conversion efficiency, reflection and transmission coefficients, and energy dissipation coefficient are examined. In addition, the superiority of the present coupling system, compared to the traditional box-type breakwater, is discussed. With well comparisons, the results show that the existence of the rear breakwater is beneficial for the formation of partial standing waves and further wave energy conversion. In the range of wave heights tested, the higher the incident wave height, the larger the energy absorption efficiency except for the short-wave regimes. Moreover, the OWC-breakwater coupling system can obtain a similar wave blocking ability to the traditional one, and simultaneously extract wave energy and decrease wave reflection

    Wave Power Extraction from a Dual Oscillating-Water- Column System Composed of Heave-Only and Onshore Units

    No full text
    With the aim of broadening the wave-frequency bandwidth of high-efficiency, a small-scaled dual oscillating-water-column (OWC) system consisting of two heave-only and onshore units was numerically investigated by a well-validated computational fluid dynamics (CFD) model. Based on the popular open source package OpenFOAM, the volume of fluid (VOF) method was employed to track the transformation of the air−water interface under the excitation of regular waves. The six degree of freedom (6DOF) solver was applied to duplicate the heaving motion of the floating device. The effects of the two chamber widths b 1 and b 2 , the vertical restraint force (represented by the dimensionless stiffness coefficient K), the back-lip draught d 2 of the floating device, and the gap Δ L between the two OWCs on the hydrodynamic characteristics and the wave energy conversion efficiencies were examined. The numerical results show that a larger width ratio b 2 / b 1 with a relatively shallow back-lip draught is more conducive to the high-performance over a broader frequency range. The floating device with a stronger vertical restraint force is more satisfactory for the high-performance of the system. Moreover, a relatively small gap is more recommended in the stage of design and construction

    An agricultural data storage mechanism based on HBase

    No full text

    An agricultural data storage mechanism based on HBase

    No full text

    Catholic education Distinctive and inclusive

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027368 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Effects of Island-Coated PVdF-HFP Composite Separator on the Performance of Commercial Lithium-ion Batteries

    No full text
    The widespread industrialization of high-energy density commercial lithium-ion batteries has long been challenged by issues of safety and efficiency stemming from uncontrollable lithium dendritic growths. Here, an island-coated composite separator has been fabricated using a pre-swelling process with water-based dispersions to address the issue of dendrite growth. The pre-swelling of the polymer particle surface balances the contradiction between the high crystallinity and electrolyte compatibility showing high electrolyte wettability and electrolyte uptake ability. Furthermore, the point-to-point surface structure can balance the high interfacial adhesion of electrodes and anti-deformation ability well, which is beneficial for preventing ripple-shaped and pot-shaped deformation, smoothing the solid particle morphology of the electrode and achieving a steady interfacial structure for lithium diffusion in cells. This new strategy constructs a non-continuous novel structure, achieving greatly improved dendrite growth suppressing and cell interface stabilization. This paper has opened up a new method for the development of low cost, simple process and easy industry of the lithium-ion pouch cell with improved quality and efficiency
    corecore