10 research outputs found

    Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies

    No full text
    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution

    Quasi Optical Multi-Ray Model For Wireless Communication Link in Millimeter Wavelengths

    No full text
    The spectrum of millimeter waves lay above 30GHz. The band between 30GHz up to 300GHz is called Extremely High Frequencies (EHF). This wide spectrum is relatively free of users and have recently became relevant for realizations of wireless communications an radars, including the fifth generation (5G) of cellular communications. Due to the short wavelengths, the propagation of millimeter waves can be analyzed using quasi-optical ray techniques. We present a multi-ray analysis of millimeter wave wireless link in the presence of multipath. The analysis is applicable for indoor and outdoor links and considers reflections from walls and buildings. It is shown that line-of-sight is not necessarily required in scenarios where multiple reflections exist as in long corridors, canyons and tunnels. The theoretical results are verified experimentally with a link in the W-band (94GHz)

    Quasi Optical Multi-Ray Model For Wireless Communication Link in Millimeter Wavelengths

    No full text
    The spectrum of millimeter waves lay above 30GHz. The band between 30GHz up to 300GHz is called Extremely High Frequencies (EHF). This wide spectrum is relatively free of users and have recently became relevant for realizations of wireless communications an radars, including the fifth generation (5G) of cellular communications. Due to the short wavelengths, the propagation of millimeter waves can be analyzed using quasi-optical ray techniques. We present a multi-ray analysis of millimeter wave wireless link in the presence of multipath. The analysis is applicable for indoor and outdoor links and considers reflections from walls and buildings. It is shown that line-of-sight is not necessarily required in scenarios where multiple reflections exist as in long corridors, canyons and tunnels. The theoretical results are verified experimentally with a link in the W-band (94GHz)

    High-Resolution Delay Spread of Wide-Band Wireless Link in Long Tunnels—Theory and Experimental Verification

    No full text
    The need for wireless communication appears everywhere, and with as few interruptions as possible. An extensive and in-depth study has been conducted on the limitations of wireless communication in pedestrian tunnels. Using an analytical mathematical ray tracing model, and performing tunnel measurements, with an autonomous measuring setup, the model was validated. An extraordinary wide band was used for the experiments, which also featured optical systems to ensure accurate results. Since the tunnel is narrow, the differences between the different paths are small, and in order to distinguish them a resolution of 0.2 ns was used. The RMS delay spread, στ, decreases throughout the tunnel, and at no point exceeds 1 ns

    Scaled Modeling and Measurement for Studying Radio Wave Propagation in Tunnels

    No full text
    The subject of radio wave propagation in tunnels has gathered attention in recent years, mainly regarding the fading phenomena caused by internal reflections. Several methods have been suggested to describe the propagation inside a tunnel. This work is based on the ray tracing approach, which is useful for structures where the dimensions are orders of magnitude larger than the transmission wavelength. Using image theory, we utilized a multi-ray model to reveal non-dimensional parameters, enabling measurements in down-scaled experiments. We present the results of field experiments in a small concrete pedestrian tunnel with smooth walls for radio frequencies (RF) of 1, 2.4, and 10 GHz, as well as in a down-scaled model, for which millimeter waves (MMWs) were used, to demonstrate the roles of the frequency, polarization, tunnel dimensions, and dielectric properties on the wave propagation. The ray tracing method correlated well with the experimental results measured in the tunnel as well as in a scale model

    Resuscitation of Pulsed Electric Field-Treated Staphylococcus aureus and Pseudomonas putida in a Rich Nutrient Medium

    No full text
    Pulsed electric fields (PEFs) technology was reported to be useful as a disinfection method in the liquid food industry. This technology may lead to membrane permeabilization and bacterial death. However, resuscitation of viable but non-culturable cells and sublethally injured microorganisms in food was reported to be associated with foodborne outbreaks. The main aim of this study was to investigate the possible recovery of injured PEF-treated bacteria. The PEF treatment of Staphylococcus aureus and Pseudomonas putida led to a reduction of 3.2 log10 and 4.8 log10, respectively. After 5 h, no colony forming units (CFUs) were observed when the bacteria were suspended in phosphate buffer saline (PBS); and for 24 h, no recovery was observed. The PEF-treated S. aureus in brain-heart infusion (BHI) medium were maintained at 1.84 × 104 CFU mL−1 for about 1.5 h. While P. putida decreased to zero CFU mL−1 by the 4th hour. However, after that, both bacteria recovered and began to multiply. Flow cytometry analysis showed that PEF treatment led to significant membrane permeabilization. Mass spectrometry analysis of PEF-treated P. putida which were suspended in BHI revealed over-expression of 22 proteins, where 55% were related to stress conditions. Understanding the recovery conditions of PEF-treated bacteria is particularly important in food industry pasteurization. To our knowledge, this is the first comprehensive study describing the recovery of injured PEF-treated S. aureus and P. putida bacteria

    Eradication of Saccharomyces cerevisiae by Pulsed Electric Field Treatments

    No full text
    One of the promising technologies that can inactivate microorganisms without heat is pulsed electric field (PEF) treatment. The aim of this study was to examine the influence of PEF treatment (2.9 kV cm−1, 100 Hz, 5000 pulses in trains mode of 500 pulses with a pulse duration of 10 µs) on Saccharomyces cerevisiae eradication and resealing in different conditions, such as current density (which is influenced by the medium conductivity), the sort of medium (phosphate buffered saline (PBS) vs. yeast malt broth (YMB) and a combined treatment of PEF with the addition of preservatives. When the S. cerevisiae were suspended in PBS, increasing the current density from 0.02 to 3.3 A cm−2 (corresponding to a total specific energy of 22.04 to 614.59 kJ kg−1) led to an increase of S. cerevisiae eradication. At 3.3 A cm−2, a total S. cerevisiae eradication was observed. However, when the S. cerevisiae in PBS was treated with the highest current density of 3.3 A cm−2, followed by dilution in a rich YMB medium, a phenomenon of cell membrane resealing was observed by flow cytometry (FCM) and CFU analysis. The viability of S. cerevisiae was also examined when the culture was exposed to repeating PEF treatments (up to four cycles) with and without the addition of preservatives. This experiment was performed when the S. cerevisiae were suspended in YMB containing tartaric acid (pH 3.4) and ethanol to a final concentration of 10% (v/v), which mimics wine. It was shown that one PEF treatment cycle led to a reduction of 1.35 log10, compared to 2.24 log10 when four cycles were applied. However, no synergic effect was observed when the preservatives, free SO2, and sorbic acid were added. This study shows the important and necessary knowledge about yeast eradication and membrane recovery processes after PEF treatment, in particular for application in the liquid food industry

    Synthesis of a SiO<sub>2</sub>/Co(OH)<sub>2</sub> Nanocomposite Catalyst for SO<sub>X</sub>/NO<sub>X</sub> Oxidation in Flue Gas

    No full text
    Sulfur and nitrogen oxides (SOX/NOX) are the primary air toxic gas pollutants emitted during fuel combustion, causing health and environmental concerns. Therefore, their emission in flue gases is strictly regulated. The existing technologies used to decrease SOX/NOX content are flue gas desulfurization, which necessitates high capital and operating costs, and selective catalytic reduction, which, in addition to these costs, requires expensive catalysts and high operating temperatures (350–400 °C). New wet scrubbing processes use O3 or H2O2 oxidants to produce (NH4)2SO4 and NH4NO3 fertilizers upon ammonia injection. However, these oxidants are expensive, corrosive, and hazardous. SiO2/Co(OH)2 nanocomposites are presented here as potential catalysts for SOX/NOX oxidation in wet scrubber reactors to scrub these toxic gases using atmospheric oxygen as the oxidant at relatively low temperatures of 60–90 °C. Several silica-cobalt-oxide-based nanocomposites were synthesized as potential catalysts at different concentrations and temperatures. The nanocomposite catalysts were characterized and exhibited excellent catalytic properties for SOX/NOX oxidation using atmospheric oxygen as the oxidant, replacing the problematic H2O2/O3. We thus propose SiO2-supported Co(OH)2 nanoparticles (NPs) as excellent catalysts for the simultaneous scrubbing of polluting SOX/NOX gases in flue gases using atmospheric O2 as the oxidation reagent at a relatively low-temperature range
    corecore