49 research outputs found

    Activation of Serotonin 2C Receptors in Dopamine Neurons Inhibits Binge-like Eating in Mice

    Get PDF
    Acknowledgments and Disclosures This work was supported by the National Institutes of Health (Grant Nos. R01DK093587 and R01DK101379 [to YX], R01DK092605 to [QT], R01DK078056 [to MM]), the Klarman Family Foundation (to YX), the Naman Family Fund for Basic Research (to YX), Curtis Hankamer Basic Research Fund (to YX), American Diabetes Association (Grant Nos. 7-13-JF-61 [to QW] and 1-15-BS-184 [to QT]), American Heart Association postdoctoral fellowship (to PX), Wellcome Trust (Grant No. WT098012 [to LKH]), and Biotechnology and Biological Sciences Research Council (Grant No. BB/K001418/1 [to LKH]). The anxiety tests (e.g., open-field test, light-dark test, elevated plus maze test) were performed in the Mouse Neurobehavior Core, Baylor College of Medicine, which was supported by National Institutes of Health Grant No. P30HD024064. PX and YH were involved in experimental design and most of the procedures, data acquisition and analyses, and writing the manuscript. XC assisted in the electrophysiological recordings; LV-T assisted in the histology study; XY, KS, CW, YY, AH, LZ, and GS assisted in surgical procedures and production of study mice. MGM, QW, QT, and LKH were involved in study design and writing the manuscript. YX is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. The authors report no biomedical financial interests or potential conflicts of interest.Peer reviewedPublisher PD

    Well-posedness of the Ericksen-Leslie system

    Full text link
    In this paper, we prove the local well-posedness of the Ericksen-Leslie system, and the global well-posednss for small initial data under the physical constrain condition on the Leslie coefficients, which ensures that the energy of the system is dissipated. Instead of the Ginzburg-Landau approximation, we construct an approximate system with the dissipated energy based on a new formulation of the system.Comment: 16 page

    5-HT recruits distinct neurocircuits to inhibit hunger-driven and non-hunger-driven feeding

    Get PDF
    Funding Information: The investigators were supported by grants from the NIH (R01DK114279, R01DK109934, and R21NS108091 to QT; R01ES027544 and R01DK111436 to ZS; R00DK107008 to PX; R01DK109194 and R56DK109194 to QW; P01DK113954, R01DK115761, R01DK117281, and R01DK125480 to YX; R01DK120858 to QT and YX; K01DK119471 to CW; and P20GM135002 to YH), USDA/CRIS (51000-064-01 S to YX and QW), American Diabetes Association (1-17-PDF-138 to YH, 7-13-JF-61 to QW, and 1-15-BS-184 to QT), American Heart Association awards (16POST27260254 to CW), the Pew Charitable Trust awards to QW (0026188), Baylor Collaborative Faculty Research Investment Program grants to QW, the Faculty Start-up grants from USDA/ ARS to QW, the Biotechnology and Biological Sciences Research Council (BB/ K001418/1 and BB/NO17838/1 to LKH), and the Medical Research Council (MC/PC/ 15077 to LKH). QW is the Pew Scholar of Biomedical Sciences and the Kavli Scholar. The anxiety tests (e.g., open-field test, lightā€“dark test, and elevated plus maze test) were performed in the Mouse Neurobehavior Core, Baylor College of Medicine, which was supported by National Institutes of Health Grant No. P30HD024064. The Ad-iN/ WED virus was kindly provided by Dr. Martin Myers (University of Michigan). The AAV9-CBA-DIO-WGA-zsGreen virus was kindly provided by Dr. Richard Palmiter (University of Washington).Peer reviewedPublisher PD

    Estrogen receptorā€“Ī± in medial amygdala neurons regulates body weight

    Get PDF
    Estrogen receptorā€“Ī± (ERĪ±) activity in the brain prevents obesity in both males and females. However, the ERĪ±-expressing neural populations that regulate body weight remain to be fully elucidated. Here we showed that single-mindedā€“1 (SIM1) neurons in the medial amygdala (MeA) express abundant levels of ERĪ±. Specific deletion of the gene encoding ERĪ± (Esr1) from SIM1 neurons, which are mostly within the MeA, caused hypoactivity and obesity in both male and female mice fed with regular chow, increased susceptibility to diet-induced obesity (DIO) in males but not in females, and blunted the body weightā€“lowering effects of a glucagon-like peptide-1ā€“estrogen (GLP-1ā€“estrogen) conjugate. Furthermore, selective adeno-associated virus-mediated deletion of Esr1 in the MeA of adult male mice produced a rapid body weight gain that was associated with remarkable reductions in physical activity but did not alter food intake. Conversely, overexpression of ERĪ± in the MeA markedly reduced the severity of DIO in male mice. Finally, an ERĪ± agonist depolarized MeA SIM1 neurons and increased their firing rate, and designer receptors exclusively activated by designer drugā€“mediated (DREADD-mediated) activation of these neurons increased physical activity in mice. Collectively, our results support a model where ERĪ± signals activate MeA neurons to stimulate physical activity, which in turn prevents body weight gain
    corecore