29 research outputs found

    Loss of miR-638 in vitro promotes cell invasion and a mesenchymal-like transition by influencing SOX2 expression in colorectal carcinoma cells

    Get PDF
    BACKGROUND: Colorectal carcinoma (CRC) is a major cause of cancer mortality. The aberrant expression of several microRNAs is associated with CRC progression; however, the molecular mechanisms underlying this phenomenon are unclear. METHODS: miR-638 and SRY-box 2 (SOX2) expression levels were detected in 36 tumor samples and their adjacent, non-tumor tissues from patients with CRC, as well as in 4 CRC cell lines, using real-time quantitative RT-PCR (qRT-PCR). SOX2 expression levels were detected in 90 tumor samples and their adjacent tissue using immunohistochemistry. Luciferase reporter and Western blot assays were used to validate SOX2 as a target gene of miR-638. The regulation of SOX2 expression by miR-638 was assessed using qRT-PCR and Western blot assays, and the effects of exogenous miR-638 and SOX2 on cell invasion and migration were evaluated in vitro using the HCT-116 and SW1116 CRC cell lines. RESULTS: We found that miR-638 expression was differentially impaired in CRC specimens and dependent on tumor grade. The inhibition of miR-638 by an antagomiR promoted cell invasion and a mesenchymal-like transition (lamellipodium stretching increased and cell-cell contacts decreased, which was accompanied by the suppression of the epithelial cell marker ZO-1/E-cadherin and the upregulation of the mesenchymal cell marker vimentin). A reporter assay revealed that miR-638 repressed the luciferase activity of a reporter gene coupled to the 3′-untranslated region of SOX2. miR-638 overexpression downregulated SOX2 expression, and miR-638 inhibition upregulated SOX2 expression. Moreover, miR-638 expression levels were correlated inversely with SOX2 mRNA levels in human CRC tissues. The RNAi-mediated knockdown of SOX2 phenocopied the invasion-inhibiting effect of miR-638; furthermore, SOX2 overexpression blocked the miR-638-induced CRC cell transition to epithelial-like cells. CONCLUSIONS: These results demonstrate that the loss of miR-638 promotes invasion and a mesenchymal-like transition by directly targeting SOX2 in vitro. These findings define miR-638 as a new, invasion-associated tumor suppressor of CRC

    The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans.

    Get PDF
    Lipid droplets are cellular organelles that consists of a neutral lipid core covered by a monolayer of phospholipids and many proteins. They are thought to function in the storage, transport, and metabolism of lipids, in signaling, and as a specialized microenvironment for metabolism in most types of cells from prokaryotic to eukaryotic organisms. Lipid droplets have received a lot of attention in the last 10 years as they are linked to the progression of many metabolic diseases and hold great potential for the development of neutral lipid-derived products, such as biofuels, food supplements, hormones, and medicines. Proteomic analysis of lipid droplets has yielded a comprehensive catalog of lipid droplet proteins, shedding light on the function of this organelle and providing evidence that its function is conserved from bacteria to man. This review summarizes many of the proteomic studies on lipid droplets from a wide range of organisms, providing an evolutionary perspective on this organelle

    Prostaglandin I2 Signaling Drives Th17 Differentiation and Exacerbates Experimental Autoimmune Encephalomyelitis

    Get PDF
    BACKGROUND: Prostaglandin I(2) (PGI(2)), a lipid mediator currently used in treatment of human disease, is a critical regulator of adaptive immune responses. Although PGI(2) signaling suppressed Th1 and Th2 immune responses, the role of PGI(2) in Th17 differentiation is not known. METHODOLOGY/PRINCIPAL FINDINGS: In mouse CD4(+)CD62L(+) naïve T cell culture, the PGI(2) analogs iloprost and cicaprost increased IL-17A and IL-22 protein production and Th17 differentiation in vitro. This effect was augmented by IL-23 and was dependent on PGI(2) receptor IP signaling. In mouse bone marrow-derived CD11c(+) dendritic cells (BMDCs), PGI(2) analogs increased the ratio of IL-23/IL-12, which is correlated with increased ability of BMDCs to stimulate naïve T cells for IL-17A production. Moreover, IP knockout mice had delayed onset of a Th17-associated neurological disease, experimental autoimmune encephalomyelitis (EAE), and reduced infiltration of IL-17A-expressing mononuclear cells in the spinal cords compared to wild type mice. These results suggest that PGI(2) promotes in vivo Th17 responses. CONCLUSION: The preferential stimulation of Th17 differentiation by IP signaling may have important clinical implications as PGI(2) and its analogs are commonly used to treat human pulmonary hypertension

    餐厨垃圾的微波干燥特性及动力学模型

    No full text

    Construction of Nanodroplet/Adiposome and Artificial Lipid Droplets

    No full text
    The lipid droplet (LD) is a cellular organelle that consists of a neutral lipid core with a monolayer-phospholipid membrane and associated proteins. Recent LD studies demonstrate its importance in metabolic diseases and biofuel development. However, the mechanisms governing its formation and dynamics remain elusive. Therefore, we developed an <i>in vitro</i> system to facilitate the elucidation of these mechanisms. We generated sphere-shaped structures with a neutral lipid core and a monolayer-phospholipid membrane by mechanically mixing neutral lipids and phospholipids followed by a two-step purification. We named the nanodroplet “adiposome”. We then recruited LD structure-like/resident proteins to the adiposome, including the bacterial MLDS, Caenorhabditis elegans MDT-28/PLIN-1, or mammalian perilipin-2. In addition, adipose triglyceride lipase (ATGL) and apolipoprotein A1 (apo A-I) were recruited to adiposome. We termed the functional protein-coated adiposomes, Artificial Lipid Droplets (ALDs). With this experimental system, different proteins can be recruited to build ALDs for some biological goals and potential usage in drug delivery

    Accessed on

    No full text
    Loss of miR-638 in vitro promotes cell invasion and a mesenchymal-like transition by influencing SOX2 expression in colorectal carcinoma cell
    corecore