59 research outputs found

    Controllable synthesis of flake-like Al-doped ZnO nanostructures and its application in inverted organic solar cells

    Get PDF
    Flake-like Al-doped ZnO (AZO) nanostructures including dense AZO nanorods were obtained via a low-temperature (100°C) hydrothermal process. By doping and varying Al concentrations, the electrical conductivity (σ) and morphology of the AZO nanostructures can be readily controlled. The effect of σ and morphology of the AZO nanostructures on the performance of the inverted organic solar cells (IOSCs) was studied. It presents that the optimized power conversion efficiency of the AZO-based IOSCs is improved by approximately 58.7% compared with that of un-doped ZnO-based IOSCs. This is attributed to that the flake-like AZO nanostructures of high σ and tunable morphology not only provide a high-conduction pathway to facilitate electron transport but also lead to a large interfacial area for exciton dissociation and charge collection by electrodes

    Identification of Key Gene Networks Associated With Cell Wall Components Leading to Flesh Firmness in Watermelon

    Get PDF
    Flesh firmness of watermelon is an important quality trait for commercial fruit values, including fruit storability, transportability, and shelf life. To date, knowledge of the gene networks underlying this trait is still limited. Herein, we used weighted genes co-expression network analysis (WGCNA) based on correlation and the association of phenotypic data (cell wall contents) with significantly differentially expressed genes between two materials, a near isogeneic line “HWF” (with high average flesh firmness) and inbred line “203Z” (with low average flesh firmness), to identify the gene networks responsible for changes in fruit flesh firmness. We identified three gene modules harboring 354 genes; these gene modules demonstrated significant correlation with water-soluble pectin, cellulose, hemicellulose, and protopectin. Based on intramodular significance, eight genes involved in cell wall biosynthesis and ethylene pathway are identified as hub genes within these modules. Among these genes, two genes, Cla012351 (Cellulose synthase) and Cla004251 (Pectinesterase), were significantly correlated with cellulose (r2 = 0.83) and protopectin (r2 = 0.81); three genes, Cla004120 (ERF1), Cla009966 (Cellulose synthase), and Cla006648 (Galactosyltransferase), had a significant correlation with water-soluble pectin (r2 = 0.91), cellulose (r2 = 0.9), and protopectin (r2 = 0.92); and three genes, Cla007092 (ERF2a), Cla004119 (probable glycosyltransferase), and Cla018816 (Xyloglucan endotransglucosylase/hydrolase), were correlated with hemicellulose (r2 = 0.85), cellulose (r2 = 0.8), and protopectin (r2 = 0.8). This study generated important insights of biosynthesis of a cell wall structure and ethylene signaling transduction pathway, the mechanism controlling the flesh firmness changes in watermelon, which provide a significant source to accelerate future functional analysis in watermelon to facilitate crop improvement

    A New Multichelating Acid System for High-Temperature Sandstone Reservoirs

    Get PDF
    Sandstone reservoir acidizing is a complex and heterogeneous acid-rock reaction process. If improper acid treatment is implemented, further damage can be induced instead of removing the initial plug, particularly in high-temperature sandstone reservoirs. An efficient acid system is the key to successful acid treatment. High-temperature sandstone treatment with conventional mud acid system faces problems including high acid-rock reaction rate, short acid effective distance, susceptibility to secondary damage, and serious corrosion to pipelines. In this paper, a new multichelating acid system has been developed to overcome these shortcomings. The acid system is composed of ternary weak acid, organic phosphonic chelating agent, anionic polycarboxylic acid chelating dispersant, fluoride, and other assisted additives. Hydrogen ion slowly released by multistage ionization in ternary weak acid and organic phosphonic within the system decreases the concentration of HF to achieve retardation. Chelating agent and chelating dispersant within the system inhibited anodic and cathodic reaction, respectively, to protect the metal from corrosion, while chelating dispersant has great chelating ability on iron ions, restricting the depolarization reaction of ferric ion and metal. The synergic effect of chelating agent and chelating dispersant removes sulfate scale precipitation and inhibits or decreases potential precipitation such as CaF2, silica gel, and fluosilicate. Mechanisms of retardation, corrosion-inhibition, and scale-removing features have been discussed and evaluated with laboratory tests. Test results indicate that this novel acid system has good overall performance, addressing the technical problems and improving the acidizing effect as well for high-temperature sandstone

    Study and application of a new blockage remover in polymer injection wells

    No full text
    With the extensive application of polymer flooding technology in offshore oilfields, the plugging in polymer injection wells has become more and more severe, which seriously affects the oil displacement effect and regular production of oilfields. In this paper, a new kind of blockage remover has been developed and evaluated by rheological behavior experiments, dissolution experiments and core flooding experiments. The results reveal that this new blockage remover can effectively reduce the viscosity of polymer and completely degrade the reservoir blockage with low corrosion rate. It is beneficial to long-term production of oil wells in offshore oilfield. Results of core flooding experiments show that this new blockage remover can relieve polymer damage and improve permeability. The agent has been applied in LD10-1 oilfield in 2016, the daily injection rate increased significantly after stimulation. Keywords: Polymer injection wells, Formation plugging, Blockage remover, Performance evaluation, Field applicatio

    Research and performance evaluation on an HA integrated acid system for sandstone acidizing

    No full text
    When the conventional sandstone acidizing technologies are adopted, many slugs are needed in the injection of prepad fluid, treatment fluid and postpad fluid, and consequently the production and operation suffers inconveniences and difficulties. In view of this, a kind of HA integrated acid system which is mainly composed of organic polybasic acids (HA)+HCl + HF and an efficient organic solvent was developed in this paper based on the idea of integrated acid replacing ''multiple steps'' and high efficiency and intensification. Via this HA integrated acid system, the complicated blockage in sandstone reservoirs can be removed effectively. Then, experiments were carried out on this system to evaluate its performance in terms of its retardance, organic blockage dissolution, chelating and precipitation inhibition. It is indicated that this new system can not only realize the acidizing of conventional integrated acid, but also present a good retarding performance by controlling H+ multi-stage ionization step by step and by forming silica acid-aluminum phosphonate film on the surface of clay minerals; that via this new HA integrated acid system, the organic blockage can be removed efficiently; and that it is wider in pH solution range than conventional APCs (aminopolycarboxyliates) chelants, stronger in chelating capacity of Ca2+, Mg2+ and Fe3+ than conventional chelants (e.g. EDTA, NTA and DTPA), and better in precipitation inhibition on metal fluoride, fluosilicic acid alkali metal, fluoaluminic acid alkali metal and hydroxide than multi-hydrogen acid, fluoboric acid and mud acid systems. These research results provide a technical support for the plugging removal in high-temperature deep oil and gas reservoirs. Keywords: Organic polybasic acid, Integrated acid, Retardance, Chelating, Precipitation, Acidizing, Sandstone, Reservoi
    • 

    corecore