89 research outputs found
Discrimination and classification of tobacco wastes by identification and quantification of polyphenols with LC–MS/MS
The chemical composition of polyphenols in tobacco waste was identified by HPLC-PDA–ESI/MS/MS and the contents of chlorogenic acids and rutin in 10 varieties of tobacco wastes were determined by HPLC–UV. The relationships between the contents of active polyphenols and the varieties of tobacco wastes were interpreted by hierarchical cluster analysis (HCA) and principal component analysis (PCA). The results showed that 15 polyphenols were identified in a methanolic extract of dried tobacco waste. The tobacco wastes were characterized by high levels of chlorogenic acids (3-CQA, 5-CQA, and 4-CQA) and rutin; their ranges in the 10 tobacco varieties were 0.116–0.196, 0.686–1.781, 0.094–0.192, and 0.413–0.998 %, respectively. According to multivariate statistics models, two active compound variables can be considered important for the discrimination of the varieties of tobacco wastes: chlorogenic acids and rutin. Consequently, samples of 10 tobacco varieties were characterized into three groups by HCA based on the PCA pattern. In conclusion, tobacco waste could be used as a new pharmaceutical material for the production of natural chlorogenic acids and rutin in the ethnopharmacological industry
Investigation of the kinetics and mechanism of the glycerol chlorination reaction using gas chromatography–mass spectrometry
As a primary by-product in biodiesel production, glycerol can be used to prepare an important fine chemical, epichlorohydrin, by the glycerol chlorination reaction. Although this process has been applied in industrial production, unfortunately, less attention has been paid to the analysis and separation of the compounds in the glycerol chlorination products. In this study, a convenient and accurate method to determine the products in glycerol chlorination reaction was established and based on the results the kinetic mechanism of the reaction was investigated. The structure of main products, including 1,3--dichloropropan-2-ol, 2,3-dichloropropan-1-ol, 3-chloro-1,2-propanediol, 2-chloro-1,3-propanediol and glycerol was ascertained by gas chromatography–mass spectrometry and the isomers of the products were distinguished. Apidic acid was considered as the best catalyst because of its excellent catalytic effect and high boiling point. The mechanism of the glycerol chlorination reaction was proposed and a new kinetic model was developed. Kinetic equations of the process in the experimental range were obtained by data fitting and the activation energies of each tandem reaction were 30.7, 41.8, 29.4 and 49.5 kJ mol-1, respectively. This study revealed the process and mechanism of the kinetics and provides the theoretical basis for engineering problems
Engineering a Microbial Consortium Based Whole-Cell System for Efficient Production of Glutarate From L-Lysine
Glutarate is an important C5 platform chemical produced during the catabolism of L-lysine through 5-aminovalerate (5-AMV) pathway. Here, we first established a whole-cell biocatalysis system for the glutarate production from L-lysine with the engineered Escherichia coli (E. coli) that co-expressed DavAB and GabDT. However, the accumulation of intermediate 5-AMV was identified as one important factor limiting glutarate production. Meanwhile, the negative interaction of co-expressing DavAB and GabDT in a single cell was also confirmed. Here, we solved these problems through engineering a microbial consortium composed of two engineered E. coli strains, BL21-22AB and BL21-YDT, as the whole-cell biocatalysts, each of which contains a part of the glutarate pathway. After the optimization of bioconversion conditions, including temperature, metal ion additives, pH, and cell ratio, 17.2 g/L glutarate was obtained from 20 g/L L-lysine with a yield of 95.1%, which was improved by 19.2% compared with that in a single cell. Little accumulation of 5-AMV was detected. Even at the high substrate concentration, the reduced 5-AMV accumulation and increased glutarate production were achieved. This synthetic consortium produced 43.8 g/L glutarate via a fed-batch strategy, the highest titer reported to date
One-pot biosynthesis of N-acetylneuraminic acid from chitin via combination of chitin-degrading enzymes, N-acetylglucosamine-2-epimerase, and N-neuraminic acid aldolase
N-acetylneuraminic acid (Neu5Ac) possesses the ability to promote mental health and enhance immunity and is widely used in both medicine and food fields as a supplement. Enzymatic production of Neu5Ac using N-acetyl-D-glucosamine (GlcNAc) as substrate was significant. However, the high-cost GlcNAc limited its development. In this study, an in vitro multi-enzyme catalysis was built to produce Neu5Ac using affordable chitin as substrate. Firstly, exochitinase SmChiA from Serratia proteamaculans and N-acetylglucosaminosidase CmNAGase from Chitinolyticbacter meiyuanensis SYBC-H1 were screened and combined to produce GlcNAc, effectively. Then, the chitinase was cascaded with N-acetylglucosamine-2-epimerase (AGE) and N-neuraminic acid aldolase (NanA) to produce Neu5Ac; the optimal conditions of the multi-enzyme catalysis system were 37°C and pH 8.5, the ratio of AGE to NanA (1:4) and addition of pyruvate (70 mM), respectively. Finally, 9.2 g/L Neu5Ac could be obtained from 20 g/L chitin within 24 h along with two supplementations with pyruvate. This work will lay a good foundation for the production of Neu5Ac from cheap chitin resources
A Novel Process for Cadaverine Bio-Production Using a Consortium of Two Engineered Escherichia coli
Bio-production of cadaverine from cheap carbon sources for synthesizing bio-based polyamides is becoming more common. Here, a novel fermentation process for cadaverine bio-production from glucose was implemented by using a microbial consortium of two engineered Escherichia coli strains to relieve the toxic effect of cadaverine on fermentation efficiency. To achieve controllable growth of strains in the microbial consortium, two engineered E. coli strains grown separately on different carbon sources were first constructed. The strains were, an L-lysine-producing E. coli NT1004 with glucose as carbon source, and a cadaverine-producing E. coli CAD03 with glucose metabolism deficiency generated by modifying the PTSGlc system with CRISPR-Cas9 technology and inactivating cadaverine degradation pathways. Co-culturing these two engineered E. coli strains with a mixture of glucose and glycerol led to successful production of cadaverine. After optimizing cultivation conditions, a cadaverine titer of 28.5 g/L was achieved with a multi-stage constant-speed feeding strategy
Characterization of a novel N-acetylneuraminic acid lyase favoring industrial N-acetylneuraminic acid synthesis process
N-Acetylneuraminic acid lyase (NAL, E.C. number 4.1.3.3) is a Class I aldolase that catalyzes the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) from pyruvate and N-acetyl-D-mannosamine (ManNAc). Due to the equilibrium favoring Neu5Ac cleavage, the enzyme catalyzes the rate-limiting step of two biocatalytic reactions producing Neu5Ac in industry. We report the biochemical characterization of a novel NAL from a “GRAS” (General recognized as safe) strain C. glutamicum ATCC 13032 (CgNal). Compared to all previously reported NALs, CgNal exhibited the lowest kcat/Km value for Neu5Ac and highest kcat/Km values for ManNAc and pyruvate, which makes CgNal favor Neu5Ac synthesis the most. The recombinant CgNal reached the highest expression level (480 mg/L culture), and the highest reported yield of Neu5Ac was achieved (194 g/L, 0.63 M). All these unique properties make CgNal a promising biocatalyst for industrial Neu5Ac biosynthesis. Additionally, although showing the best Neu5Ac synthesis activity among the NAL family, CgNal is more related to dihydrodipicolinate synthase (DHDPS) by phylogenetic analysis. The activities of CgNal towards both NAL's and DHDPS' substrates are fairly high, which indicates CgNal a bi-functional enzyme. The sequence analysis suggests that CgNal might have adopted a unique set of residues for substrates recognition
2012 International Conference on Applied Biotechnology
The 2012 International Conference on Applied Biotechnology (ICAB 2012) was held in Tianjin, China on October 18-19, 2012. It provides not only a platform for domestic and foreign researchers to exchange their ideas and experiences with the application-oriented research of biotechnology, but also an opportunity to promote the development and prosperity of the biotechnology industry. The proceedings of ICAB 2012 mainly focus on the world's latest scientific research and techniques in applied biotechnology, including Industrial Microbial Technology, Food Biotechnology, Pharmaceutical Biotechnology, Environmental Biotechnology, Marine Biotechnology, Agricultural Biotechnology, Biological Materials and Bio-energy Technology, Advances in Biotechnology, and Future Trends in Biotechnology. These proceedings are intended for scientists and researchers engaging in applied biotechnology. Professor Pingkai Ouyang is the President of the Nanjing University of Technology, China. Professor Tongcun Zhang is the Director of the Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education at the College of Bioengineering, Tianjin University of Science and Technology, China. Dr. Samuel Kaplan is a Professor at the Department of Microbiology & Molecular Genetics at the University of Texas at Houston Medical School, Houston, Texas, USA. Dr. Bill Skarnes is a Professor at Wellcome Trust Sanger Institute, United Kingdom.The 2012 International Conference on Applied Biotechnology (ICAB 2012) was held in Tianjin, China on October 18-19, 2012. It provides not only a platform for domestic and foreign researchers to exchange their ideas and experiences with the application-oriented research of biotechnology, but also an opportunity to promote the development and prosperity of the biotechnology industry. The proceedings of ICAB 2012 mainly focus on the world's latest scientific research and techniques in applied biotechnology, including Industrial Microbial Technology, Food Biotechnology, Pharmaceutical Biotechnology, Environmental Biotechnology, Marine Biotechnology, Agricultural Biotechnology, Biological Materials and Bio-energy Technology, Advances in Biotechnology, and Future Trends in Biotechnology. These proceedings are intended for scientists and researchers engaging in applied biotechnology. Professor Pingkai Ouyang is the President of the Nanjing University of Technology, China. Professor Tongcun Zhang is the Director of the Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education at the College of Bioengineering, Tianjin University of Science and Technology, China. Dr. Samuel Kaplan is a Professor at the Department of Microbiology & Molecular Genetics at the University of Texas at Houston Medical School, Houston, Texas, USA. Dr. Bill Skarnes is a Professor at Wellcome Trust Sanger Institute, United Kingdom
Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012)Volume 1 /
XVIII, 645 p. 259 illus.online resource
Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012)Volume 2 /
XVIII, 1276 p. 222 illus.online resource
Retardation Effects of Filter Mud in Molasses on Composite Silicate Cement
The filter mud in molasses has a significant inhibitory effect on biological activity and cannot be utilised by organisms; therefore, before molasses are biotransformed, the filter mud will be separated and directly discarded in the environment. In this study, the filter mud was used as the retarder of cement concrete OPC 42.5 for the first time. It was found that when 0.2–0.8% filter mud was added to fresh cement concrete OPC PC 42.5, the hardening time of cement slurry was significantly prolonged due to the synergistic retarding effect of sugar, colloid and total cellulose in the filter mud. In addition, the compressive strength of cement concrete mixed with the filter mud in the early stage (<10 days), middle stage (10–100 days) and later stage (180 days) was significantly higher than that of cement concrete and cement concrete mixed with commercial asphalt lignosulfonate. These results showed that the filter mud in molasses could realise harmless and resource utilisation, which could promote the comprehensive utilisation of molasses
- …