3 research outputs found

    Identification and Characterization of MicroRNAs in the Goat (Capra hircus) Rumen during Embryonic Development

    No full text
    The rumen is an important digestive organ in ruminants. Numerous regulatory factors including microRNAs (miRNAs) are involved in embryonic organ development. In the present study, miRNAs expressed in the rumens of goats (Capra hircus) and their potential roles in the pathways involved in rumen development were identified using high-throughput sequencing. Histological morphology revealed a distinct difference in each layer of rumen during the period from embryonic day 60 (E60) to embryonic day 135 (E135). We determined the expression profiles of miRNAs in the goat rumen, and identified 423 known miRNAs and 559 potentially novel miRNAs in the E60 and E135 embryonic rumen, respectively. Bioinformatics analysis annotated the 42 differentially expressed miRNAs and the top 10 most highly expressed miRNAs of the two libraries to 48 and 38 gene ontology categories, as well as to 168 and 71 Kyoto Encyclopedia of Genes and Genomes pathways, respectively. The expression patterns of eight randomly selected miRNAs were validated by stem-loop quantitative reverse transcription PCR, suggesting that the sequencing data were reliable. We profiled the genome-wide expression of rumen-expressed miRNAs at different prenatal stages of rumen tissues, revealing that a subset of miRNAs might play important roles in the formation of the rumen layers. Taken together, these findings will aid the investigation of dominant rumen-related miRNA sets and help understand the genetic control of rumen development in goats

    Detecting signatures of selection within the Tibetan sheep mitochondrial genome

    No full text
    <p>Tibetan sheep, a Chinese indigenous breed, are mainly distributed in plateau and mountain-valley areas at a terrestrial elevation between 2260 and 4100 m. The herd is genetically distinct from the other domestic sheep and undergoes acclimatization to adapt to the hypoxic environment. To date, whether the mitochondrial DNA modification of Tibetan sheep shares the same feature as the other domestic breed remains unknown. In this study, we compared the whole mitogenome sequences from 32 Tibetan sheep, 22 domestic sheep and 24 commercial sheep to identify the selection signatures of hypoxic-tolerant in Tibetan sheep. Nucleotide diversity analysis using the sliding window method showed that the highest level of nucleotide diversity was observed in the control region with a peak value of <i>π</i> = 0.05215, while the lowest <i>π</i> value was detected in the <i>tRNAs</i> region. qPCR results showed that the relative mtDNA copy number in Tibetan sheep was significantly lower than that in Suffolk sheep. None of the mutations in <i>12S rRNA</i> were fixed in Tibetan sheep, which indicated that there has been less artificial selection in this herd than the other domestic and commercial breeds. Although one site (1277G) might undergo the purifying selection, it was not identified as the breed-specific allele in Tibetan sheep. We proposed that nature selection was the main drive during the domestication of Tibetan sheep and single mutation (or locus) could not reveal the signature of selection as for the high diversity in the mitogenome of Tibetan sheep.</p

    Reaction between CH<sub>3</sub>O<sub>2</sub> and BrO Radicals: A New Source of Upper Troposphere Lower Stratosphere Hydroxyl Radicals

    No full text
    Over the last two decades it has emerged that measured hydroxyl radical levels in the upper troposphere are often underestimated by models, leading to the assertion that there are missing sources. Here we report laboratory studies of the kinetics and products of the reaction between CH<sub>3</sub>O<sub>2</sub> and BrO radicals that shows that this could be an important new source of hydroxyl radicals:BrO + CH<sub>3</sub>O<sub>2</sub> → products (1). The temperature dependent value in Arrhenius form of <i>k</i>(<i>T</i>) is <i>k</i><sub>1</sub> = (2.42<sub>–0.72</sub><sup>+1.02</sup>) × 10<sup>–14</sup> exp­[(1617 ± 94)/<i>T</i>] cm<sup>3</sup> molecule<sup>–1</sup> s<sup>–1</sup>. In addition, CH<sub>2</sub>OO and HOBr are believed to be the major products. Global model results suggest that the decomposition of H<sub>2</sub>COO to form OH could lead to an enhancement in OH of up to 20% in mid-latitudes in the upper troposphere and in the lower stratosphere enhancements in OH of 2–9% are inferred from model integrations. In addition, reaction 1 aids conversion of BrO to HOBr and slows polar ozone loss in the lower stratosphere
    corecore