41 research outputs found

    SARS Exposure and Emergency Department Workers

    Get PDF
    Of 193 emergency department workers exposed to severe acute respiratory syndrome (SARS), 9 (4.7%) were infected. Pneumonia developed in six workers, and assays showed anti-SARS immunoglobulin (Ig) M and IgG. The other three workers were IgM-positive and had lower IgG titers; in two, mild illness developed, and one remained asymptomatic

    Secretome-Based Identification of ULBP2 as a Novel Serum Marker for Pancreatic Cancer Detection

    Get PDF
    BACKGROUND: To discover novel markers for improving the efficacy of pancreatic cancer (PC) diagnosis, the secretome of two PC cell lines (BxPC-3 and MIA PaCa-2) was profiled. UL16 binding protein 2 (ULBP2), one of the proteins identified in the PC cell secretome, was selected for evaluation as a biomarker for PC detection because its mRNA level was also found to be significantly elevated in PC tissues. METHODS: ULBP2 expression in PC tissues from 67 patients was studied by immunohistochemistry. ULBP2 serum levels in 154 PC patients and 142 healthy controls were measured by bead-based immunoassay, and the efficacy of serum ULBP2 for PC detection was compared with the widely used serological PC marker carbohydrate antigen 19-9 (CA 19-9). RESULTS: Immunohistochemical analyses revealed an elevated expression of ULPB2 in PC tissues compared with adjacent non-cancerous tissues. Meanwhile, the serum levels of ULBP2 among all PC patients (n = 154) and in early-stage cancer patients were significantly higher than those in healthy controls (p<0.0001). The combination of ULBP2 and CA 19-9 outperformed each marker alone in distinguishing PC patients from healthy individuals. Importantly, an analysis of the area under receiver operating characteristic curves showed that ULBP2 was superior to CA 19-9 in discriminating patients with early-stage PC from healthy controls. CONCLUSIONS: Collectively, our results indicate that ULBP2 may represent a novel and useful serum biomarker for pancreatic cancer primary screening

    Evaluation of Mixed-Initiative Knowledge Based Development

    No full text
    This paper presents a general framework for the empirical evaluation of mixed-initiative knowledge base development methods and tools. It also illustrates it with a knowledge acquisition experiment performed to validate a mixedinitiative method for acquiring problem solving rules directly from a subject matter expert. The main feature of this framework is that the evaluation is an integral part of system design and prototyping. The framework includes a repertoire of evaluation methods, guidelines for designing experiments based on these methods, and reusable evaluation utilities.

    Evaluation of Mixed-Initiative Knowledge Base Development Methods and Tools

    No full text
    This paper presents a general framework for the empirical evaluation of mixed-initiative knowledge base development methods and tools. It also illustrates it with a knowledge acquisition experiment performed to validate a mixedinitiative method for acquiring problem solving rules directly from a subject matter expert. The main feature of this framework is that the evaluation is an integral part of system design and prototyping. The framework includes a repertoire of evaluation methods, guidelines for designing experiments based on these methods, and reusable evaluation utilities

    Xenogeneic cell therapy provides a novel potential therapeutic option for cancers by restoring tissue function, repairing cancer wound and reviving anti-tumor immune responses

    No full text
    Abstract Conventional cancer treatments such as surgery, radiotherapy, chemotherapy and targeted therapy, not only destruct tumors, but also injure the normal tissues, resulting in limited efficacy. Recent advances in cancer therapy have aimed at changing the host milieu of cancer against its development and progression by targeting tumor microenvironment and host immune system to eradicate tumors. To the host body, tumors arise in tissues. They impair the normal healthy tissue physiological function, become chronically inflamed and develop non-healing or overhealing wounds as well as drive immuno-suppressive activity to escape immunity attack. Therefore, the rational therapeutic strategies for cancers should treat both the tumors and the host body for the best efficacy to turn the deadly malignant disease to a manageable one. Xenogeneic cell therapy (i.e. cellular xenotransplantation) using cells from non-human source animals such as pigs has shown promising results in animal studies and clinical xenotransplantation in restoring lost tissue physiological function and repairing the wound. However, the major hurdle of xenogeneic cell therapy is the host immunological barriers that are induced by transplanted xenogeneic cells to reject xenografts. Possibly, the immunological barriers of xenogeneic cells could be used as immunological boosters to activate the host immune system. Here, we hypothesized that because of the biological properties of xenogeneic cells to the recipient humans, the transplantation of xenogeneic cells (i.e. cellular xenotransplantation) into cancer patients’ organs of the same origin with developed tumors may restore the impaired function of organs, repair the wound, reduce chronic inflammation and revive the anti-tumor immunity to achieve beneficial outcome for patients

    An Experiment in Agent Teaching by Subject Matter Experts

    No full text
    This paper presents a successful knowledge acquisition experiment in which subject matter experts that did not have any prior knowledge engineering experience succeeded to teach the Disciple-COA agent how to critique courses of action, a challenge problem addressed by the DARPA’s High Performance Knowledge Bases program. We first present the COA challenge problem and the architecture of Disciple-COA, a learning agent shell from the Disciple family. Then we present the knowledge acquisition experiment, detailing both the expert-Disciple interactions, and the automatic knowledge base development processes that take place as a result of these interactions. The results of this experiment provide strong evidence that the Disciple approach is a viable solution to the knowledge acquisition bottleneck.

    Immunotherapeutic Agents for Intratumoral Immunotherapy

    No full text
    Immunotherapy using systemic immune checkpoint inhibitors (ICI) and chimeric antigen receptor (CAR) T cells has revolutionized cancer treatment, but it only benefits a subset of patients. Systemic immunotherapies cause severe autoimmune toxicities and cytokine storms. Immune-related adverse events (irAEs) plus the immunosuppressive tumor microenvironment (TME) have been linked to the inefficacy of systemic immunotherapy. Intratumoral immunotherapy that increases immunotherapeutic agent bioavailability inside tumors could enhance the efficacy of immunotherapies and reduce systemic toxicities. In preclinical and clinical studies, intratumoral administration of immunostimulatory agents from small molecules to xenogeneic cells has demonstrated antitumor effects not only on the injected tumors but also against noninjected lesions. Herein, we review and discuss the results of these approaches in preclinical models and clinical trials to build the landscape of intratumoral immunotherapeutic agents and we describe how they stimulate the body’s immune system to trigger antitumor immunity as well as the challenges in clinical practice. Systemic and intratumoral combination immunotherapy would make the best use of the body’s immune system to treat cancers. Combining precision medicine and immunotherapy in cancer treatment would treat both the mutated targets in tumors and the weakened body’s immune system simultaneously, exerting maximum effects of the medical intervention
    corecore