8,318 research outputs found
Molecular hydrodynamics of the moving contact line in two-phase immiscible flows
The ``no-slip'' boundary condition, i.e., zero fluid velocity relative to the
solid at the fluid-solid interface, has been very successful in describing many
macroscopic flows. A problem of principle arises when the no-slip boundary
condition is used to model the hydrodynamics of immiscible-fluid displacement
in the vicinity of the moving contact line, where the interface separating two
immiscible fluids intersects the solid wall. Decades ago it was already known
that the moving contact line is incompatible with the no-slip boundary
condition, since the latter would imply infinite dissipation due to a
non-integrable singularity in the stress near the contact line. In this paper
we first present an introductory review of the problem. We then present a
detailed review of our recent results on the contact-line motion in immiscible
two-phase flow, from MD simulations to continuum hydrodynamics calculations.
Through extensive MD studies and detailed analysis, we have uncovered the slip
boundary condition governing the moving contact line, denoted the generalized
Navier boundary condition. We have used this discovery to formulate a continuum
hydrodynamic model whose predictions are in remarkable quantitative agreement
with the MD simulation results at the molecular level. These results serve to
affirm the validity of the generalized Navier boundary condition, as well as to
open up the possibility of continuum hydrodynamic calculations of immiscible
flows that are physically meaningful at the molecular level.Comment: 36 pages with 33 figure
Evaluation of surface energy and radiation balance systems for FIFE
The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge
Hydrodynamic slip boundary condition at chemically patterned surfaces: A continuum deduction from molecular dynamics
We investigate the slip boundary condition for single-phase flow past a
chemically patterned surface. Molecular dynamics (MD) simulations show that
modulation of fluid-solid interaction along a chemically patterned surface
induces a lateral structure in the fluid molecular organization near the
surface. Consequently, various forces and stresses in the fluid vary along the
patterned surface. Given the presence of these lateral variations, a general
scheme is developed to extract hydrodynamic information from MD data. With the
help of this scheme, the validity of the Navier slip boundary condition is
verified for the chemically patterned surface, where a local slip length can be
defined. Based on the MD results, a continuum hydrodynamic model is formulated
using the Navier-Stokes equation and the Navier boundary condition, with a slip
length varying along the patterned surface. Steady-state velocity fields from
continuum calculations are in quantitative agreement with those from MD
simulations. It is shown that, when the pattern period is sufficiently small,
the solid surface appears to be homogeneous, with an effective slip length that
can be controlled by surface patterning. Such a tunable slip length may have
important applications in nanofluidics.Comment: 41 pages, 17 figure
- …