7,317 research outputs found

    Fast quantum information transfer with superconducting flux qubits coupled to a cavity

    Full text link
    We present a way to realize quantum information transfer with superconducting flux qubits coupled to a cavity. Because only resonant qubit-cavity interaction and resonant qubit-pulse interaction are applied, the information transfer can be performed much faster, when compared with the previous proposals. This proposal does not require adjustment of the qubit level spacings during the operation. Moreover, neither uniformity in the device parameters nor exact placement of qubits in the cavity is needed by this proposal.Comment: 6 pages, 3 figure

    General relations of heavy quark-antiquark potentials induced by reparameterization invariance

    Full text link
    A set of general relations between the spin-independent and spin-dependent potentials of heavy quark and anti-quark interactions are derived from reparameterization invariance in the Heavy Quark Effective Theory. It covers the Gromes relation and includes some new interesting relations which are useful in understanding the spin-independent and spin-dependent relativistic corrections to the leading order nonrelativistic potential.Comment: 11 pages, TUIMP-TH-93/54, CCAST-93-3

    Quantum transport through a double Aharonov-Bohm-interferometer in the presence of Andreev reflection

    Full text link
    Quantum transport through a double Aharonov-Bohm-interferometer in the presence of Andreev reflection is investigated in terms of the nonequilibrium Green function method with which the reflection current is obtained. Tunable Andreev reflection probabilities depending on the interdot coupling strength and magnetic flux as well are analysised in detail. It is found that the oscillation period of the reflection probability with respect to the magnetic flux for the double interferometer depends linearly on the ratio of two parts magnetic fluxes n, i.e. 2(n+1)pi, while that of a single interferometer is 2pi. The coupling strength not only affects the height and the linewidth of Andreev reflection current peaks vs gate votage but also shifts the peak positions. It is furthermore demonstrated that the Andreev reflection current peaks can be tuned by the magnetic fluxes.Comment: 13 pages, 12 figur

    Spectroscopy of q3qˉ3\rm{q}^3\bar{\rm{q}}^3-States in Quark Model and Baryon-Antibaryon Enhancements

    Full text link
    We study the mass spectrum of the q3qˉ3\rm{q}^3\bar{\rm{q}}^3 mesons both from the quark model with triquark correlations and from common quark model with colormagnetic interactions and with relative S-waves between quarks. Two cluster configurations (q3)−(qˉ3)(\rm{q}^3)-(\bar{\rm{q}}^3) and (q2qˉ)−(qqˉ2)(\rm{q}^2\bar{\rm{q}})-(\rm{q}\bar{\rm{q}}^2) are considered. In the spectrum we find rather stable states which have the same quantum number with particle resonances which are corresponding to the ppˉp\bar{p} enhancement, pΛˉp\bar{\Lambda} enhancement and ΛΛˉ\Lambda\bar{\Lambda} enhancement with spin-0\mathbf{0} or 1\mathbf{1}. This imply these enhancements are NOT experimental artifacts. The color-spin-flavor structures of ppˉp\bar{p}, pΛˉp\bar{\Lambda}, and ΛΛˉ\Lambda\bar{\Lambda} enhancements are revealed. The existence of spin-1\mathbf{1} ΛΛˉ,pΛˉ,ppˉ\Lambda\bar{\Lambda}, p\bar{\Lambda}, p\bar{p} enhancements is predicted.Comment: 45 pages, 5 figure

    Mechanism and kinetics of Ni-Y2O3-ZrO2 hydrogen electrode for water electrolysis reactions in solid oxide electrolysis cells

    Get PDF
    © The Author(s) 2015. Published by ECS. Ni-Y2O3 stabilized ZrO2 (Ni-YSZ) cermet is the most commonly used hydrogen electrode for hydrogen oxidation reaction (HOR) under solid oxide fuel cell (SOFC) mode and water reduction reaction (WRR) under solid oxide electrolysis cell (SOEC) mode. Here we studied the electrocatalytic activity of Ni-YSZ electrodes as a function of Ni content, water concentration and dc bias for WRR and HOR under SOEC and SOFC modes, respectively. The activity of Ni-YSZ cermet increases significantly with the increase of YSZ content due to the enhanced three phase boundaries (TPB). The electrode activity for the WRR and in less degree for the HOR increases with the increase of steam concentration. The electrode polarization resistance, RE, for the WRR increases with the dc bias, while in the case of HOR, RE decreases with the dc bias, demonstrating that kinetically the WRR and HOR is not reversible on the Ni-YSZ cermet electrodes under SOFC and SOEC operation modes. The WRR can be described by two electrode processes associated with the H2O adsorption and diffusion on the oxygen-covered Ni or YSZ surface in the vicinities of TPB, followed by the charge transfer. The significant increase of high frequency electrode polarization resistance, RH and in much less extent low frequency electrode polarization resistance, RL with the dc bias indicates that the water electrolysis reaction is kinetically controlled by the reactant supply (e.g., the adsorbed H2O species) limited charge transfer process

    Progress towards quantum simulating the classical O(2) model

    Full text link
    We connect explicitly the classical O(2)O(2) model in 1+1 dimensions, a model sharing important features with U(1)U(1) lattice gauge theory, to physical models potentially implementable on optical lattices and evolving at physical time. Using the tensor renormalization group formulation, we take the time continuum limit and check that finite dimensional projections used in recent proposals for quantum simulators provide controllable approximations of the original model. We propose two-species Bose-Hubbard models corresponding to these finite dimensional projections at strong coupling and discuss their possible implementations on optical lattices using a 87^{87}Rb and 41^{41}K Bose-Bose mixture.Comment: 7 pages, 6 figures, uses revtex, new material and one author added, as to appear in Phys. Rev.

    Effect of characteristics of (Sm,Ce)O2 powder on the fabrication and performance of anode-supported solid oxide fuel cells

    Get PDF
    Effect of characteristics of Sm0.2Ce0.8O1.9 (SDC) powder as a function of calcination temperature on the fabrication of dense and flat anode-supported SDC thin electrolyte cells has been studied. The results show that the calcination temperature has a significant effect on the particle size, degree of agglomeration, and sintering profiles of the SDC powder. The characteristics of SDC powders have a significant effect on the structure integrity and flatness of the SDC electrolyte film/anode substrate bilayer cells. The SDC electrolyte layer delaminates from the anode substrate for the SDC powder calcined at 600 °C and the bilayer cell concaves towards the SDC electrolyte layer for the SDC powder calcined at 800 °C. When the calcinations temperature increased to 1000 °C, strongly bonded SDC electrolyte film/anode substrate bilayer structures were achieved. An open-circuit voltage (OCV) of 0.82–0.84 V and maximum power density of ~1 W cm−2 were obtained at 600 °C using hydrogen as fuel and stationary air as the oxidant. The results indicate that the matching of the onset sintering temperature and maximum sintering rate temperature is most critical for the development of a dense and flat Ni/SDC supported SDC thin electrolyte cells for intermediate temperature solid oxide fuel cells
    • …
    corecore