2,475 research outputs found
Depression of fast excitatory synaptic transmission in large aspiny neurons of the neostriatum after transient forebrain ischemia
Spiny neurons in the neostriatum die within 24 hr after transient global ischemia, whereas large aspiny (LA) neurons remain intact. To reveal the mechanisms of such selective cell death after ischemia, excitatory neurotransmission was studied in LA neurons before and after ischemia. The intrastriatally evoked fast EPSCs in LA neurons were depressed < or =24 hr after ischemia. The concentration-response curves generated by application of exogenous glutamate in these neurons were approximately the same before and after ischemia. A train of five stimuli (100 Hz) induced progressively smaller EPSCs, but the proportion of decrease in EPSC amplitude at 4 hr after ischemia was significantly smaller compared with control and at 24 hr after ischemia. Parallel depression of NMDA receptor and AMPA receptor-mediated EPSCs was also observed after ischemia, supporting the involvement of presynaptic mechanisms. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the inhibition of evoked EPSCs at 4 hr after ischemia but not at 24 hr after ischemia. Electron microscopic studies demonstrated that the most presynaptic terminals in the striatum had a normal appearance at 4 hr after ischemia but showed degenerating signs at 24 hr after ischemia. These results indicated that the excitatory neurotransmission in LA neurons was depressed after ischemia via presynaptic mechanisms. The depression of EPSCs shortly after ischemia might be attributable to the enhanced adenosine A1 receptor function on synaptic transmission, and the depression at late time points might result from the degeneration of presynaptic terminals
Is the late near-infrared bump in short-hard GRB 130603B due to the Li-Paczynski kilonova?
Short-hard gamma-ray bursts (GRBs) are widely believed to be produced by the
merger of two binary compact objects, specifically by two neutron stars or by a
neutron star orbiting a black hole. According to the Li-Paczynski kilonova
model, the merger would launch sub-relativistic ejecta and a
near-infrared/optical transient would then occur, lasting up to days, which is
powered by the radioactive decay of heavy elements synthesized in the ejecta.
The detection of a late bump using the {\em Hubble Space Telescope} ({\em HST})
in the near-infrared afterglow light curve of the short-hard GRB 130603B is
indeed consistent with such a model. However, as shown in this Letter, the
limited {\em HST} near-infrared lightcurve behavior can also be interpreted as
the synchrotron radiation of the external shock driven by a wide mildly
relativistic outflow. In such a scenario, the radio emission is expected to
peak with a flux of Jy, which is detectable for current radio
arrays. Hence, the radio afterglow data can provide complementary evidence on
the nature of the bump in GRB 130603B. It is worth noting that good
spectroscopy during the bump phase in short-hard bursts can test validity of
either model above, analogous to spectroscopy of broad-lined Type Ic supernova
in long-soft GRBs.Comment: 4 pages, 2 figures, published in ApJ Lette
Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles
It is well known that delivery efficiency to cells is highly dependent on particle size and the administered dose. However, there is a marked discrepancy in many reports, mainly due to the inconsistency in assessment of various parameters. In this particular research, we designed experiments using layered double hydroxide nanoparticles (LDH NPs) to specifically elucidate the effect of particle size, dose and dye loading manner on cellular uptake. Using the number of LDH NPs taken up by HCT-116 cells as the indicator of delivery efficiency, we found that (1) the size of sheet-like LDH in the range of 40–100 nm did not significantly affect their cellular uptake; (2) cellular uptake of 40 and 100 nm LDH NPs was increased proportionally to the number concentration below a critical value, but remained relatively constant beyond the critical value; and (3) the effect of the dye loading manner is mainly dependent on the loading capacity or yield. In particular, the loading capacity is determined by the NP specific surface area. This research may be extended to a larger size range to examine the size effect, but suggests that it is necessary to set up a protocol to evaluate the effects of NP’s physicochemical properties on the cellular delivery efficiency
Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications
Layered double hydroxide (LDH)-based nanocomposites, constructed by interacting LDH nanoparticles with other nanomaterials (e.g. silica nanoparticles and magnetic nanoparticles) or polymeric molecules (e.g. proteins), are an emerging yet active area in healthcare, environmental remediation, energy conversion and storage. Combining advantages of each component in the structure and functions, hierarchical LDH-based nanocomposites have shown great potential in biomedicine, water purification, and energy storage and conversion. This feature article summarises the recent advances in LDH-based nanocomposites, focusing on their synthesis, structure, and application in drug delivery, bio-imaging, water purification, supercapacitors, and catalysis. This journal i
- …