1,979 research outputs found
The effect of new oral anticoagulants and extended thromboprophylaxis policy on hip and knee arthroplasty outcomes: observational study
The efficacy and safety of the new oral anticoagulants (NOAC) and the benefits of extended duration thromboprophylaxis following hip and knee replacements remain uncertain. This observational study describes the relations between thromboprophylaxis policies following hip and knee replacements across England's NHS and patient outcomes between January 2008 and December 2011. From the national administrative database, we analyzed mortality, thromboembolic complications, emergency readmission, and bleeding rates for 201,418 hip and 230,282 knee replacements. There were no differences in outcomes for either LMWH or NOAC. We found no advantage in favor of any single anticoagulation policy or in changing policy. This study supports the American Academy of Orthopaedic Surgeons' recommendation that the choice and duration of thromboprophylaxis prophylaxis be decided by the treating surgeon
How to find an attractive solution to the liar paradox
The general thesis of this paper is that metasemantic theories can play a central role in determining the correct solution to the liar paradox. I argue for the thesis by providing a specific example. I show how Lewis’s reference-magnetic metasemantic theory may decide between two of the most influential solutions to the liar paradox: Kripke’s minimal fixed point theory of truth and Gupta and Belnap’s revision theory of truth. In particular, I suggest that Lewis’s metasemantic theory favours Kripke’s solution to the paradox over Gupta and Belnap’s. I then sketch how other standard criteria for assessing solutions to the liar paradox, such as whether a solution faces a so-called revenge paradox, fit into this picture. While the discussion of the specific example is itself important, the underlying lesson is that we have an unused strategy for resolving one of the hardest problems in philosophy
Time dependent neutrino billiards
Quantum dynamica of a massless Dirac particle in time-dependent 1D box and
circular billiard with time-dependent radius is studied. An exact analytical
wave functions and eigenvalues are obtained for the case of linear
time-dependence of the boundary position
Further evidence supporting a role for gs signal transduction in severe malaria pathogenesis.
With the functional demonstration of a role in erythrocyte invasion by Plasmodium falciparum parasites, implications in the aetiology of common conditions that prevail in individuals of African origin, and a wealth of pharmacological knowledge, the stimulatory G protein (Gs) signal transduction pathway presents an exciting target for anti-malarial drug intervention. Having previously demonstrated a role for the G-alpha-s gene, GNAS, in severe malaria disease, we sought to identify other important components of the Gs pathway. Using meta-analysis across case-control and family trio (affected child and parental controls) studies of severe malaria from The Gambia and Malawi, we sought evidence of association in six Gs pathway candidate genes: adenosine receptor 2A (ADORA2A) and 2B (ADORA2B), beta-adrenergic receptor kinase 1 (ADRBK1), adenylyl cyclase 9 (ADCY9), G protein beta subunit 3 (GNB3), and regulator of G protein signalling 2 (RGS2). Our study amassed a total of 2278 cases and 2364 controls. Allele-based models of association were investigated in all genes, and genotype and haplotype-based models were investigated where significant allelic associations were identified. Although no significant associations were observed in the other genes, several were identified in ADORA2A. The most significant association was observed at the rs9624472 locus, where the G allele (approximately 20% frequency) appeared to confer enhanced risk to severe malaria [OR = 1.22 (1.09-1.37); P = 0.001]. Further investigation of the ADORA2A gene region is required to validate the associations identified here, and to identify and functionally characterize the responsible causal variant(s). Our results provide further evidence supporting a role of the Gs signal transduction pathway in the regulation of severe malaria, and request further exploration of this pathway in future studies
- …