2,269 research outputs found

    Singularity results for functional equations driven by linear fractional transformations

    Full text link
    We consider functional equations driven by linear fractional transformations, which are special cases of de Rham's functional equations. We consider Hausdorff dimension of the measure whose distribution function is the solution. We give a necessary and sufficient condition for singularity. We also show that they have a relationship with stationary measures.Comment: 14 pages, Title changed, to appear in Journal of Theoretical Probabilit

    Structures of enzyme-substrate complexes of lysozyme

    Full text link

    Long-Ranged Orientational Order in Dipolar Fluids

    Full text link
    Recently Groh and Dietrich claimed the thermodynamic state of a dipolar fluid depends on the shape of the fluid's container. For example, a homogeneous fluid in a short fat container would phase separate when transferred to a tall skinny container of identical volume and temperature. Their calculation thus lacks a thermodynamic limit. We show that removal of demagnetizing fields restores the true, shape independent, thermodynamic limit. As a consequence, spontaneously magnetized liquids display inhomogeneous magnetization textures.Comment: 3 pages, LaTex, no figures. Submitted as comment to PRL, May 199

    Charge-Fluctuation-Induced Non-analytic Bending Rigidity

    Full text link
    In this Letter, we consider a neutral system of mobile positive and negative charges confined on the surface of curved films. This may be an appropriate model for: i) a highly charged membrane whose counterions are confined to a sheath near its surface; ii) a membrane composed of an equimolar mixture of anionic and cationic surfactants in aqueous solution. We find that the charge fluctuations contribute a non-analytic term to the bending rigidity that varies logarithmically with the radius of curvature. This may lead to spontaneous vesicle formation, which is indeed observed in similar systems.Comment: Revtex, 9 pages, no figures, submitted to PR

    Organized condensation of worm-like chains

    Full text link
    We present results relevant to the equilibrium organization of DNA strands of arbitrary length interacting with a spherical organizing center, suggestive of DNA-histone complexation in nucleosomes. We obtain a rich phase diagram in which a wrapping state is transformed into a complex multi-leafed, rosette structure as the adhesion energy is reduced. The statistical mechanics of the "melting" of a rosette can be mapped into an exactly soluble one-dimensional many-body problem.Comment: 15 pages, 2 figures in a pdf fil

    Polyelectrolyte Bundles

    Full text link
    Using extensive Molecular Dynamics simulations we study the behavior of polyelectrolytes with hydrophobic side chains, which are known to form cylindrical micelles in aqueous solution. We investigate the stability of such bundles with respect to hydrophobicity, the strength of the electrostatic interaction, and the bundle size. We show that for the parameter range relevant for sulfonated poly-para-phenylenes (PPP) one finds a stable finite bundle size. In a more generic model we also show the influence of the length of the precursor oligomer on the stability of the bundles. We also point out that our model has close similarities to DNA solutions with added condensing agents, hinting to the possibility that the size of DNA aggregates is under certain circumstances thermodynamically limited.Comment: 10 pages, 8 figure

    Hill's Equation with Random Forcing Parameters: Determination of Growth Rates through Random Matrices

    Full text link
    This paper derives expressions for the growth rates for the random 2 x 2 matrices that result from solutions to the random Hill's equation. The parameters that appear in Hill's equation include the forcing strength and oscillation frequency. The development of the solutions to this periodic differential equation can be described by a discrete map, where the matrix elements are given by the principal solutions for each cycle. Variations in the forcing strength and oscillation frequency lead to matrix elements that vary from cycle to cycle. This paper presents an analysis of the growth rates including cases where all of the cycles are highly unstable, where some cycles are near the stability border, and where the map would be stable in the absence of fluctuations. For all of these regimes, we provide expressions for the growth rates of the matrices that describe the solutions.Comment: 22 pages, 3 figure

    Identification of Immunoreactive Material in Mammoth Fossils

    Get PDF
    The fossil record represents a history of life on this planet. Attempts to obtain molecular information from this record by analysis of nucleic acids found within fossils of extreme age have been unsuccessful or called into question. However, previous studies have demonstrated the long-term persistence of peptides within fossils and have used antibodies to extant proteins to demonstrate antigenic material. In this study we address two questions: Do immunogenic/antigenic materials persist in fossils? and; Can fossil material be used to raise antibodies that will cross-react with extant proteins? We have used material extracted from a well-preserved 100,000-300,000-year-old mammoth skull to produce antisera. The specificity of the antisera was tested by ELISA, western blotting, and immunohistochemistry. It was demonstrated that antisera reacted specifically with the fossils and no the surrounding sediments. Reactivity of antisera with modern proteins and tissues was also demonstrated, as was the ability to detect evolutionary relationships via antibody-antigen interactions. Mass spectrometry demonstrated the response of amino acids and specific peptides within the fossil. Peptides were purified by anion-exchange chromatography and sequenced by tandem mass spectrometry. The collagen-derived peptides may have been the source of at least some of the immunologic reactivity, but the antisera identified molecules that were not observed by mass spectrometry, indicating that immunologic methods may have greater sensitivity. Although the presence of peptides and amino acids was demonstrated, the exact nature of the antigenic material was not fully clarified. This report demonstrated that antibodies may be used to obtain information from the fossil record

    Exact Lyapunov Exponent for Infinite Products of Random Matrices

    Full text link
    In this work, we give a rigorous explicit formula for the Lyapunov exponent for some binary infinite products of random 2×22\times 2 real matrices. All these products are constructed using only two types of matrices, AA and BB, which are chosen according to a stochastic process. The matrix AA is singular, namely its determinant is zero. This formula is derived by using a particular decomposition for the matrix BB, which allows us to write the Lyapunov exponent as a sum of convergent series. Finally, we show with an example that the Lyapunov exponent is a discontinuous function of the given parameter.Comment: 1 pages, CPT-93/P.2974,late
    corecore