5 research outputs found

    On the hierarchy of electronic and magnetic energy scales in novel 3d, 4d and 5d transition metal oxides probed by X-ray techniques

    Get PDF
    Transition metal oxides (TMOs) represent the natural playground for the investigation of the exotic phases produced by electronic correlations, which include high-temperature superconductivity, giant magnetoresistance and topological insulators. The peculiar electronic and magnetic properties of TMOs stem from the interplay between the electron-electron correlations, the crystal field and the spin-orbit coupling (SOC) of the transition metal (TM) d valence electrons. The balance of these energy scales significantly depends on the TM element considered: moving from the 3d to the 5d row of the periodic table, the electronic correlations decrease due to the larger size of the atomic orbitals, while SOC increases as a result of the increased atomic charge. In this work, I present three separate case studies of 3d, 4d and 5d TMOs which highlight the impact of the competing interactions just mentioned on the electronic and magnetic properties of the system. Concerning 3d TMOs, I investigate the magnetic ground state of a family of weak ferromagnets, where the weak SOC is responsible for the appearance of a net magnetisation in the main antiferromagnetic order. I then examine the intermediate case of the 4d oxide Ca2RuO4. Here, electronic correlations, SOC and octahedral distortions act on an equal footing to determine the TM ground state. In particular, I show how the crystal field tuning achieved by La substitution affects the electronic and magnetic properties. Finally, I address the spin-wave spectrum of the electron-doped perovskite iridate (Sr 1-x La x)2IrO4, where the strong SOC of 5d electrons gives rise to a spin-orbit entangled Mott state with peculiar exchange interactions. Most of the experimental findings are the results of measurements performed by means of several synchrotron radiation scattering and absorption techniques: the latter proved to be extremely powerful and versatile in the investigation of many aspects of the physics of the systems discussed

    Anisotropic exchange and spin-wave damping in pure and electron-doped Sr2_2IrO4_4

    Get PDF
    The collective magnetic excitations in the spin-orbit Mott insulator (Sr1−x_{1-x}Lax_x)2_2IrO4_4 (x=0, 0.01, 0.04, 0.1x=0,\,0.01,\,0.04,\, 0.1) were investigated by means of resonant inelastic x-ray scattering. We report significant magnon energy gaps at both the crystallographic and antiferromagnetic zone centers at all doping levels, along with a remarkably pronounced momentum-dependent lifetime broadening. The spin-wave gap is accounted for by a significant anisotropy in the interactions between Jeff=1/2J_\text{eff}=1/2 isospins, thus marking the departure of Sr2_2IrO4_4 from the essentially isotropic Heisenberg model appropriate for the superconducting cuprates.Comment: 6 pages, 4 figure

    Evolution of the magnetic excitations in NaOsO3_3 through its metal-insulator transition

    Get PDF
    The temperature dependence of the excitation spectrum in NaOsO3_{\text{3}} through its metal-to-insulator transition (MIT) at 410 K has been investigated using resonant inelastic X-ray scattering (RIXS) at the Os L3_{\text{3}} edge. High resolution (ΔE∼\Delta E \sim 56 meV) measurements show that the well-defined, low energy magnons in the insulating state weaken and dampen upon approaching the metallic state. Concomitantly, a broad continuum of excitations develops which is well described by the magnetic fluctuations of a nearly antiferromagnetic Fermi liquid. By revealing the continuous evolution of the magnetic quasiparticle spectrum as it changes its character from itinerant to localized, our results provide unprecedented insight into the nature of the MIT in NaOsO3_{\text{3}}.Comment: Accepted in Physical Review Letters, part of a joint submission to Physical Review B. Supersedes arXiv:1707.0555
    corecore