21 research outputs found

    Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation.

    Get PDF
    Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites

    A well-conserved Plasmodium falciparum var gene shows an unusual stage-specific transcript pattern

    Get PDF
    The var multicopy gene family encodes Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variant antigens, which, through their ability to adhere to a variety of host receptors, are thought to be important virulence factors. The predominant expression of a single cytoadherent PfEMP1 type on an infected red blood cell, and the switching between different PfEMP1 types to evade host protective antibody responses, are processes thought to be controlled at the transcriptional level. Contradictory data have been published on the timing of var gene transcription. Reverse transcription-polymerase chain reaction (RT-PCR) data suggested that transcription of the predominant var gene occurs in the later (pigmented trophozoite) stages, whereas Northern blot data indicated such transcripts only in early (ring) stages. We investigated this discrepancy by Northern blot, with probes covering a diverse var gene repertoire. We confirm that almost all var transcript types were detected only in ring stages. However, one type, the well-conserved varCSA transcript, was present constitutively in different laboratory parasites and does not appear to undergo antigenic variation. Although varCSA has been shown to encode a chondroitin sulphate A (CSA)-binding PfEMP1, we find that the presence of full-length varCSA transcripts does not correlate with the CSA-binding phenotype

    LOCUST-GPU predictions of fast-ion transport and power loads due to ELM-control coils in ITER

    Get PDF
    The LOCUST-GPU code has been applied to study the fast-ion transport and loss caused by resonant magnetic perturbations in the high-performance Q= 10 ITER baseline scenario. The unique computational efficiency of the code is exploited to calculate the impact of the application of the ITER ELM-control-coil system on neutral beam heating efficiency, as well as producing detailed predictions of the resulting plasma-facing component power loads, for a variety of operational parameters—the toroidal mode number n0, mode spectrum and absolute toroidal phase of the imposed perturbation. The feasibility of continually rotating the perturbations is assessed and shown to be effective at reducing the time-averaged power loads.Through careful adjustment of the relative phase of the applied perturbation in the three rows of coils, peak power loads are found to correlate with reductions in NBI heating efficiency for n= 3 fields. Adjusting the phase this way can increase total NBI system efficiency by approximately 2-3% and reduce peak power loads by up to 0.43 MWm-2. From the point of view of fast-ion confinement, n= 3 ELM control fields are preferred overall to n= 4 fields.In addition, the implementation of 3D magnetic fields in LOCUST is also verified by comparison with the SPIRAL code for a DIII-D discharge with ITER-similar shaping and n= 3 perturbation

    An Effective Method to Purify Plasmodium falciparum DNA Directly from Clinical Blood Samples for Whole Genome High-Throughput Sequencing

    Get PDF
    Highly parallel sequencing technologies permit cost-effective whole genome sequencing of hundreds of Plasmodium parasites. The ability to sequence clinical Plasmodium samples, extracted directly from patient blood without a culture step, presents a unique opportunity to sample the diversity of “natural” parasite populations in high resolution clinical and epidemiological studies. A major challenge to sequencing clinical Plasmodium samples is the abundance of human DNA, which may substantially reduce the yield of Plasmodium sequence. We tested a range of human white blood cell (WBC) depletion methods on P. falciparum-infected patient samples in search of a method displaying an optimal balance of WBC-removal efficacy, cost, simplicity, and applicability to low resource settings. In the first of a two-part study, combinations of three different WBC depletion methods were tested on 43 patient blood samples in Mali. A two-step combination of Lymphoprep plus Plasmodipur best fitted our requirements, although moderate variability was observed in human DNA quantity. This approach was further assessed in a larger sample of 76 patients from Burkina Faso. WBC-removal efficacy remained high (<30% human DNA in >70% samples) and lower variation was observed in human DNA quantities. In order to assess the Plasmodium sequence yield at different human DNA proportions, 59 samples with up to 60% human DNA contamination were sequenced on the Illumina Genome Analyzer platform. An average ∼40-fold coverage of the genome was observed per lane for samples with ≤30% human DNA. Even in low resource settings, using a simple two-step combination of Lymphoprep plus Plasmodipur, over 70% of clinical sample preparations should exhibit sufficiently low human DNA quantities to enable ∼40-fold sequence coverage of the P. falciparum genome using a single lane on the Illumina Genome Analyzer platform. This approach should greatly facilitate large-scale clinical and epidemiologic studies of P. falciparum

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
    corecore