3 research outputs found

    Electrocatalytic Site Activity Enhancement via Orbital Overlap in A <sub>2</sub>MnRuO <sub>7</sub>(A = Dy <sup>3+</sup>, Ho <sup>3+</sup>, and Er <sup>3+</sup>) Pyrochlore Nanostructures

    Get PDF
    Oxygen electrocatalysis at transition metal oxides is one of the key challenges underpinning electrochemical energy conversion systems, involving a delicate interplay of the bulk electronic structure and surface coordination of the active sites. In this work, we investigate for the first time the structure-activity relationship of A2RuMnO7 (A = Dy3+, Ho3+, and Er3+) nanoparticles, demonstrating how orbital mixing of Ru, Mn, and O promotes high density of states at the appropriate energy range for oxygen electrocatalysis. The bulk structure and surface composition of these multicomponent pyrochlores are investigated by high-resolution transmission electron microscopy, X-ray diffraction, X-ray absorption spectroscopy, X-ray emission spectroscopy (XES), and X-ray photoemission spectroscopy (XPS). The materials exhibit high phase purity (cubic fcc with a space group Fd3\uaf m) in which variations in M-O bonds length are less than 1% upon replacing the A-site lanthanide. XES and XPS show that the mean oxidation state at the Mn-site as well as the nanoparticle surface composition was slightly affected by the lanthanide. The pyrochlore nanoparticles are significantly more active than the binary RuO2 and MnO2 toward the 4-electron oxygen reduction reaction in alkaline solutions. Interestingly, normalization of kinetic parameters by the number density of electroactive sites concludes that Dy2RuMnO7 shows twice higher activity than benchmark materials such as LaMnO3. Analysis of the electrochemical profiles supported by density functional theory calculations reveals that the origin of the enhanced catalytic activity is linked to the mixing of Ru and Mn d-orbitals and O p-orbitals at the conduction band which strongly overlap with the formal redox energy of O2 in solution. The activity enhancement strongly manifests in the case of Dy2RuMnO7 where the Ru/Mn ratio is closer to 1 in comparison with the Ho3+ and Er3+ analogs. These electronic effects are discussed in the context of the Gerischer formalism for electron transfer at the semiconductor/electrolyte junctions

    Structural evolution of the double perovskites Sr2B'UO6 (B' = Mn, Fe, Co, Ni, Zn) upon reduction: Magnetic behavior of the uranium cations

    Get PDF
    We describe the preparation of five perovskite oxides obtained upon reduction of Sr2Bâ€ČUO6 (Bâ€Č = Mn, Fe, Co, Ni, Zn) with H2/N2 (5%/95%) at 900 °C during 8 h, and their structural characterization by X-ray powder diffraction (XRPD). During the reduction process there is a partial segregation of the elemental metal when Bâ€Č = Co, Ni, Fe, and the corresponding Bâ€ČO oxide when Bâ€Č = Mn, Zn. Whereas the parent, oxygen stoichiometric double perovskites Sr2Bâ€ČUO6 are long-range ordered concerning Bâ€Č and U cations. The crystal structures of the reduced phases, SrBâ€Č0.5−xU0.5+xO3 with 0.37 < x < 0.27, correspond to simple, disordered perovskites; they are orthorhombic, space group Pnma (No. 62), with a full cationic disorder at the B site. Magnetic measurements performed on the phase with Bâ€Č = Zn, indicate uncompensated antiferromagnetic ordering of the U5+/U4+ sublattice below 30 K.Fil: Pinacca, Ruben Miguel. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Área QuĂ­mica General e InorgĂĄnica; ArgentinaFil: Viola, Maria del Carmen. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Área QuĂ­mica General e InorgĂĄnica; ArgentinaFil: Pedregosa, Jose Carmelo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de Investigaciones en TecnologĂ­a QuĂ­mica. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Instituto de Investigaciones en TecnologĂ­a QuĂ­mica; Argentina. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Área QuĂ­mica General e InorgĂĄnica; ArgentinaFil: Carbonio, Raul Ernesto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba; ArgentinaFil: MartĂ­nez Lope, M. J.. Instituto de Ciencia de Materiales de Madrid; España. Consejo Superior de Investigaciones CientĂ­ficas; EspañaFil: Alonso, J. A.. Instituto de Ciencia de Materiales de Madrid; España. Consejo Superior de Investigaciones CientĂ­ficas; Españ

    Raman and infrared spectroscopy of Sr2Bâ€ČUO6 (Bâ€Č = Ni; Co) double perovskites

    Get PDF
    Temperature dependent normal modes and lattice thermal expansion of Sr 2Bâ€ČUO6 (Bâ€Č = Ni, Co) double perovskites were investigated by Raman/infrared spectroscopies and synchrotron X-ray diffraction, respectively. Monoclinic crystal structures with space group P21/n were confirmed for both compounds, with no clear structural phase transition between 10 and 400 K. As predicted for this structure, the first-order Raman and infrared spectra show a plethora of active modes. In addition, the Raman spectra reveal an enhancement of the integrated area of an oxygen stretching mode, which is also observed in higher-order Raman modes, and an anomalous softening of ∌1 cm-1 upon cooling below T* ∌ 300 K. In contrast, the infrared spectra show conventional temperature dependence. The band profile phonon anomalies are possibly related to an unspecified electronic property of Sr2Bâ€ČUO6 (Bâ€Č = Ni, Co).Fil: Moreira, A. F. L.. Universidade Estadual de Campinas; BrasilFil: GarcĂ­a Flores, A. F.. Universidade Estadual de Campinas; BrasilFil: Granados, E.. Universidade Estadual de Campinas; BrasilFil: Massa, Nestor Emilio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Centro de QuĂ­mica InorgĂĄnica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de QuĂ­mica InorgĂĄnica "Dr. Pedro J. Aymonino"; ArgentinaFil: Pinacca, Ruben Miguel. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia; ArgentinaFil: Pedregosa, Jose Carmelo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de Investigaciones en TecnologĂ­a QuĂ­mica. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Instituto de Investigaciones en TecnologĂ­a QuĂ­mica; Argentina. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia; ArgentinaFil: Carbonio, Raul Ernesto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Instituto de Investigaciones en FĂ­sico-quĂ­mica de CĂłrdoba; ArgentinaFil: Muñoz, A.. Universidad Carlos III de Madrid. Instituto de Salud; EspañaFil: MartĂ­nez Lope, M. J.. Instituto de Ciencia de Materiales de Madrid; EspañaFil: Alonso, J. A.. Instituto de Ciencia de Materiales de Madrid; EspañaFil: del Campo, L.. Conditions ExtrĂȘmes et MatĂ©riaux Haute TempĂ©rature et Irradiation; FranciaFil: De Sousa Meneses, D.. Conditions ExtrĂȘmes et MatĂ©riaux Haute TempĂ©rature et Irradiation; FranciaFil: Echegut, P.. Conditions ExtrĂȘmes et MatĂ©riaux Haute TempĂ©rature et Irradiation; Franci
    corecore