2,609 research outputs found

    Quasi-normal modes of holographic system with Weyl correction and momentum dissipation

    Full text link
    We study the charge response in complex frequency plane and the quasi-normal modes (QNMs) of the boundary quantum field theory with momentum dissipation dual to a probe generalized Maxwell system with Weyl correction. When the strength of the momentum dissipation α^\hat{\alpha} is small, the pole structure of the conductivity is similar to the case without the momentum dissipation. The qualitative correspondence between the poles of the real part of the conductivity of the original theory and the ones of its electromagnetic (EM) dual theory approximately holds when γγ\gamma\rightarrow -\gamma with γ\gamma being the Weyl coupling parameter. While the strong momentum dissipation alters the pole structure such that most of the poles locate at the purely imaginary axis. At this moment, the correspondence between the poles of the original theory and its EM dual one is violated when γγ\gamma\rightarrow -\gamma. In addition, for the dominant pole, the EM duality almost holds when γγ\gamma\rightarrow -\gamma for all α^\hat{\alpha} except for a small region of α^\hat{\alpha}.Comment: 18 pages, 9 figure

    Holographic superconductivity from higher derivative theory

    Full text link
    We construct a 66 derivative holographic superconductor model in the 44-dimensional bulk spacetimes, in which the normal state describes a quantum critical (QC) phase. The phase diagram (γ1,T^c)(\gamma_1,\hat{T}_c) and the condensation as the function of temperature are worked out numerically. We observe that with the decrease of the coupling parameter γ1\gamma_1, the critical temperature T^c\hat{T}_c decreases and the formation of charged scalar hair becomes harder. We also calculate the optical conductivity. An appealing characteristic is a wider extension of the superconducting energy gap, comparing with that of 44 derivative theory. It is expected that this phenomena can be observed in the real materials of high temperature superconductor. Also the Homes' law in our present models with 44 and 66 derivative corrections is explored. We find that in certain range of parameters γ\gamma and γ1\gamma_1, the experimentally measured value of the universal constant CC in Homes' law can be obtained.Comment: 16 pages, 5 figure

    Holographic Butterfly Effect at Quantum Critical Points

    Full text link
    When the Lyapunov exponent λL\lambda_L in a quantum chaotic system saturates the bound λL2πkBT\lambda_L\leqslant 2\pi k_BT, it is proposed that this system has a holographic dual described by a gravity theory. In particular, the butterfly effect as a prominent phenomenon of chaos can ubiquitously exist in a black hole system characterized by a shockwave solution near the horizon. In this paper we propose that the butterfly velocity can be used to diagnose quantum phase transition (QPT) in holographic theories. We provide evidences for this proposal with an anisotropic holographic model exhibiting metal-insulator transitions (MIT), in which the derivatives of the butterfly velocity with respect to system parameters characterizes quantum critical points (QCP) with local extremes in zero temperature limit. We also point out that this proposal can be tested by experiments in the light of recent progress on the measurement of out-of-time-order correlation function (OTOC).Comment: 7 figures, 15 page

    CaMKIIの活性化によるシナプス後部液相の持続的な形成と分離

    Get PDF
    京都大学新制・課程博士博士(医科学)甲第23115号医科博第126号新制||医科||8(附属図書館)京都大学大学院医学研究科医科学専攻(主査)教授 伊佐 正, 教授 髙橋 良輔, 教授 井上 治久学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    Holographic Metal-Insulator Transition in Higher Derivative Gravity

    Full text link
    We introduce a Weyl term into the Einstein-Maxwell-Axion theory in four dimensional spacetime. Up to the first order of the Weyl coupling parameter γ\gamma, we construct charged black brane solutions without translational invariance in a perturbative manner. Among all the holographic frameworks involving higher derivative gravity, we are the first to obtain metal-insulator transitions (MIT) when varying the system parameters at zero temperature. Furthermore, we study the holographic entanglement entropy (HEE) of strip geometry in this model and find that the second order derivative of HEE with respect to the axion parameter exhibits maximization behavior near quantum critical points (QCPs) of MIT. It testifies the conjecture in 1502.03661 and 1604.04857 that HEE itself or its derivatives can be used to diagnose quantum phase transition (QPT).Comment: 20 pages, 4 figures; typo corrected, added 3 references; minor revisio
    corecore