We introduce a Weyl term into the Einstein-Maxwell-Axion theory in four
dimensional spacetime. Up to the first order of the Weyl coupling parameter
γ, we construct charged black brane solutions without translational
invariance in a perturbative manner. Among all the holographic frameworks
involving higher derivative gravity, we are the first to obtain metal-insulator
transitions (MIT) when varying the system parameters at zero temperature.
Furthermore, we study the holographic entanglement entropy (HEE) of strip
geometry in this model and find that the second order derivative of HEE with
respect to the axion parameter exhibits maximization behavior near quantum
critical points (QCPs) of MIT. It testifies the conjecture in 1502.03661 and
1604.04857 that HEE itself or its derivatives can be used to diagnose quantum
phase transition (QPT).Comment: 20 pages, 4 figures; typo corrected, added 3 references; minor
revisio