2,365 research outputs found

    In Memorium of Dr. Bing Xia

    Get PDF

    Cyclodextrin-based biological stimuli-responsive carriers for smart and precision medicine

    Get PDF
    Spurred on by recent progress in nanotechnology and precision medicine, smart drug carriers are entering an entirely new era. Smart drug carriers have been widely studied in recent years as a result of their ability to control drug release under different microenvironments (such as pH, redox, and enzyme) in vivo. Host-guest interactions based on cyclodextrins have proven to be an efficient tool for fabricating smart drug carriers. Because of the application of host-guest interactions, many kinds of biological molecules or supramolecular building blocks can combine into an organic whole at the molecular level. In this review, the features, mechanisms of action, and potent applications of biological stimuli-responsive drug carriers based on cyclodextrins are discussed. In addition, some personal perspectives on this field are presented

    On quasinormal frequencies of black hole perturbations with an external source

    Full text link
    In the study of perturbations around black hole configurations, whether an external source can influence the perturbation behavior is an interesting topic to investigate. When the source acts as an initial pulse, it is intuitively acceptable that the existing quasinormal frequencies will remain unchanged. However, the confirmation of such an intuition is not trivial for the rotating black hole, since the eigenvalues in the radial and angular parts of the master equations are coupled. We show that for the rotating black holes, a moderate source term in the master equation in the Laplace s-domain does not modify the quasinormal modes. Furthermore, we generalize our discussions to the case where the external source serves as a driving force. Different from an initial pulse, an external source may further drive the system to experience new perturbation modes. To be specific, novel dissipative singularities might be brought into existence and enrich the pole structure. This is a physically relevant scenario, due to its possible implication in modified gravity. Our arguments are based on exploring the pole structure of the solution in the Laplace s-domain with the presence of the external source. The analytical analyses are verified numerically by solving the inhomogeneous differential equation and extracting the dominant complex frequencies by employing the Prony method.Comment: 17 pages, 3 figures, accepted for publication on EPJ

    No association of the insulin gene VNTR polymorphism with polycystic ovary syndrome in a Han Chinese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with an increased risk of type II diabetes mellitus. The results of previous research about the association of the VNTR polymorphism in 5-prime flanking region of the insulin (INS) gene with PCOS have been inconsistent. The present study was to investigate the association of the INS-VNTR polymorphism with PCOS in a Han Chinese population.</p> <p>Methods</p> <p>The -23/HphI polymorphism as a surrogate marker of the INS-VNTR length polymorphism was genotyped by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) in 216 PCOS patients and 192 non-PCOS women as a control group. Allelic and genotypic frequencies were compared between patients and controls, and these results were analyzed in respect to clinical test data.</p> <p>Results</p> <p>No significant differences were observed between the cases and controls groups either in allele (P = 0.996) or genotype (P = 0.802) frequencies of INS-VNTR polymorphism; Regarding anthropometric data and hormone levels, there were no significant differences between INS-VNTR genotypes in the PCOS group, as well as in the non-PCOS group.</p> <p>Conclusion</p> <p>The present study demonstrated for the first time that the INS-VNTR polymorphism is not a key risk factor for sporadic PCOS in the Han Chinese women. Further studies are needed to give a global view of this polymorphism in pathogenesis of PCOS in a large-scale sample, family-based association design or well-defined subgroups of PCOS.</p

    Identification of suppressor of cytokine signalling (SOCS) 6, 7, 9 and CISH in rainbow trout Oncorhynchus mykiss and analysis of their expression in relation to other known trout SOCS

    Get PDF
    Four new members of the SOCS family of molecules in rainbow trout (Oncorhynchus mykiss), CISH and SOCS6, 7 and 9, are described for the first time in this species. The genes had a wide tissue distribution in trout, and were detected in gills, skin, muscle, liver, spleen, head kidney, intestine and brain, with brain having the highest expression levels. Stimulation of a rainbow trout leucocyte cell line, RTS-11, (mononuclear/macrophage-like cells) with LPS or Poly 1:C had no effect on the expression of these genes, although in both cases the previously identified SOCS1-3 genes were up-regulated. Similarly, stimulation of RTS-11 or RTG-2 (fibroblasts) cells with the trout recombinant cytokines IFN-gamma or IL-1 beta had no effect on CISH or SOCS6, 7 and 9 expression. However, PMA stimulation did impact on SOCS6 and SOCS9 expression, and LPS stimulation of primary cultures or bacterial infection (Yersinia ruckeri) increased significantly CISH expression (as well as SOCS1 and SOCS2 or SOCS3 respectively). It is apparent that the type II SOCS genes (CISH, SOCS1-3) are particularly relevant to immune regulation in fish, although the intriguing expansion of the SOCS4/5 subgroup in fish requires further investigation as to their role and functional divergence. (C) 2010 Elsevier Ltd. All rights reserved

    Customizable fabrication for auxetic graphene assembled macrofilms with high conductivity and flexibility

    Get PDF
    Auxetic materials with negative Poisson's ratios unusually exhibit intuitive mechanical behaviors, such as cross-section expansion instead of contraction during tension. Such behaviors are interesting because they may enhance unusual mechanical properties. However, controllable preparation of materials with negative Poisson's ratio is still a major challenge. In this study, we report the synthesis of a flexible auxetic graphene assembled macrofilm (GAMF) from graphene oxide nanosheets by a thermal annealing and press assistant method. The obtained materials exhibit good flexibility and significantly wide tunable negative Poisson's ratios ranging from −0.11 to −0.53. We also develop a reconstruction model for characterization the uniaxial tension of GAMF based on X-ray tomographic images. The tensile simulation result predicts the function relationship between Poisson's ratio and critical thickness of pore channels, which is in good agreement with the experimental data. As a result, an effective tunable way is proposed for customizable fabrication of GAMF with tunable negative Poisson's ratios, and the GAMF materials with good flexibility, high electrical conductivity and superior auxetic behavior looks promising for future development of wearable electronics

    Current and further outlook on the protective potential of Antrodia camphorata against neurological disorders

    Get PDF
    Prevalent neurological disorders such as Alzheimer’s disease, Parkinson’s disease, and stroke are increasingly becoming a global burden as society ages. It is well-known that degeneration and loss of neurons are the fundamental underlying processes, but there are still no effective therapies for these neurological diseases. In recent years, plenty of studies have focused on the pharmacology and feasibility of natural products as new strategies for the development of drugs that target neurological disorders. Antrodia camphorata has become one of the most promising candidates, and the crude extracts and some active metabolites of it have been reported to play various pharmacological activities to alleviate neurological symptoms at cellular and molecular levels. This review highlights the current evidence of Antrodia camphorata against neurological disorders, including safety evaluation, metabolism, blood-brain barrier penetration, neuroprotective activities, and the potential on regulating the gut-microbiome-brain axis. Furthermore, potential strategies to resolve problematic issues identified in previous studies are also discussed. We aim to provide an overview for the ongoing development and utilization of Antrodia camphorata in cerebral neuropathology
    corecore