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Four new members of the SOCS family of molecules in rainbow trout (Oncorhynchus mykiss), CISH and
SOCS6, 7 and 9, are described for the first time in this species. The genes had a wide tissue distribution in
trout, and were detected in gills, skin, muscle, liver, spleen, head kidney, intestine and brain, with brain
having the highest expression levels. Stimulation of a rainbow trout leucocyte cell line, RTS-11,
(mononuclear/macrophage-like cells) with LPS or Poly I:C had no effect on the expression of these genes,
although in both cases the previously identified SOCS1-3 genes were up-regulated. Similarly, stimulation
of RTS-11 or RTG-2 (fibroblasts) cells with the trout recombinant cytokines IFN-g or IL-1b had no effect
on CISH or SOCS6, 7 and 9 expression. However, PMA stimulation did impact on SOCS6 and SOCS9
expression, and LPS stimulation of primary cultures or bacterial infection (Yersinia ruckeri) increased
significantly CISH expression (as well as SOCS1 and SOCS2 or SOCS3 respectively). It is apparent that the
type II SOCS genes (CISH, SOCS1-3) are particularly relevant to immune regulation in fish, although the
intriguing expansion of the SOCS4/5 subgroup in fish requires further investigation as to their role and
functional divergence.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many important cytokines have been identified in teleost fish in
the last decade. These have included pro-inflammatory cytokines
such as interleukin-1b (IL-1b) [1], IL-6 [2,3], IL-8 [4,5], IL-11 [6] and
tumour necrosis factor-a (TNF-a) [7,8], with studies of the
recombinant proteins in general confirming a similar function in
fish to their counterparts in mammals [9e11], although exceptions
exist [12]. Important initiators and effectors of adaptive immune
responses have also been cloned, such as IL-2 [13], IL-12 [14], IL-15
[15], IL-17 [16,17], IL-18 [18], IL-21 [13], IL-22 [19,20], interferon-g
(IFN-g) [21] and molecules with relatedness to Th2-type cytokines
[22,23], with protein studies beginning to validate their functional
relevance [15,24,25]. However, rather less is known about the
control of cytokine signalling in fish. Two important cytokines
EMBL/DDBJ/GenBank nucleo-
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343 (SOCS7) and AM903341
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known to be negative regulators of adaptive immune responses
have been cloned, namely transforming growth factor-b1 (TGF-b1)
and IL-10 [26e28], with rTGF-b shown to down-regulate the nitric
oxide response of TNF-a activated macrophages [29]. In addition
a novel IL-1 family member has been discovered in fish that can
antagonise the activity of IL-1b [30], although it remains to be
determined if it is a receptor antagonist that has evolved inde-
pendently of the IL-1ra known in mammals. Another group of
molecules has also been discovered that can regulate cytokine
action in mammals, called the suppressors of cytokine signalling
(SOCS) molecules [31e33], and these have also now been discov-
ered in fish.

SOCS molecules comprise eight proteins in mammals, SOCS1 to 7
and cytokine inducible SRC homology 2 (SH2) e containing protein
(CISH)[33]. All of these proteins possess an SH2 domain, a C-terminal
SOCS box and a variable N-terminal extended SH2 subdomain (ESS).
They are induced by cytokines and inhibit signal transduction from
type I and II cytokine receptors in a classical negative-feedback loop.
Whilst it is known that they all bind phosphorylated tyrosine resi-
dues via the SH2 domain, different SOCS function in different ways to
inhibit cytokine signalling. For example, SOCS1 and SOCS3 can inhibit
JAK activity via a kinase inhibitory region (KIR) domain that acts as
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a pseudo-substrate. In contrast, SOCS2 and CISH appear to act as
competitors of STAT proteins. In addition, the SOCS box acts to target
substrate proteins for ubiquitination and proteasomal degradation,
via E3 ligases [32]. In this way SOCS molecules can regulate the half
life of a wide range of proteins. In fish, SOCS1-3 molecules were
initially described in a number of fish species [34e36], and most
recently a thorough analysis of fish genomes has revealed a larger
number of SOCS family members are present in teleost fish than are
seen in mammals [37]. In this study we have discovered genes for
four new members of the SOCS family in rainbow trout (Onco-
rhynchus mykiss), by analysis of ESTs, that were identified as CISH,
SOCS6, 7 and 9.Wehave analysed their expression indifferent tissues
and, in comparison to the already identified trout SOCS1, 2 and 3
genes, after infection for the first time in fish. In addition we have
studied their expression in trout cell lines after stimulationwith LPS,
Poly I:C, PMA and two recombinant cytokines.

2. Materials and methods

2.1. Molecular identification of trout CISH, SOCS5, 6 and 7

An initial search of rainbow trout (O. mykiss) ESTs with
homology to mammalian CISH and SOCS molecules was conducted
using the TBLASTN program (http://www.ncbi.nlm.nih.gov/BLAST)
[38]. The ESTs BX863093 (CISH), CU066723 and BX312152 (SOCS6),
BX878085 and CA376519 (SOCS7), and CA387203 (SOCS9) were
identified and used for primer design (Table 1) to amplify the full-
length cDNAs.

30- and/or 50-RACEwas conducted to obtain the complete coding
regions as described previously [36,39]. The nucleotide sequences
generated were assembled and analysed with the AlignIR pro-
gramme (LI-COR, Inc.). The protein identificationwas carried out on
http://www.expasy.org/tools/ [40]. The domain structure was
Table 1
Primers used for cloning and expression.

Gene Primer Sequence (50

CISH CISH F1 CAGACCGTCT
CISH F2 CGGACACAAC
CISH F CATTCTACCTT
CISH R CTGTACTGGA

SOCS1 SOCS1 F2 GATTAATACC
SOCS1 R1 CTCTCCCATCG

SOCS2 SOCS2 F2 GACGCGTGGG
SOCS2 R1 CGAGTCTCGT

SOCS3 SOCS3 F1 GAACAACACA
SOCS3 R1 GAAGGTCTTG

SOCS6 SOCS6 F GTTGAAAAAC
SOCS6 F7 CCCACAATGC
SOCS6 R1 CCTTTGCTTTG
SOCS6 R2 GTTGAACAGA
SOCS6 R3 CTGTGGTACA

SOCS7 SOCS7 F3 CCTCTGGTGTC
SOCS7 F4 GAACTGGAAA
SOCS7 R1 GACATGTACA
SOCS7 R2 GGAGCTCCTG
SOCS7 R5 GACACCAGAG

SOCS9 SOCS9 R2 GCCTGCCTCCA
SOCS9 R3 GTAGCCTAGT
SOCS9 R5 CGGCATCTCTT
SOCS9 F3 CAGCAGCTGC
SOCS9 F4 ACTAACTAGC
SOCS9 F5 AGCCTCAAGT

EF-1a EF-1aF CAAGGATATC
EF-1aR ACAGCGAAAC
predicted using the SMART6 program (http://smart.embl-
heidelberg.de/smart/) [41]. Global sequence comparison was per-
formed using the MatGAT program [42]. Phylogenetic trees were
created by the neighbour-joining method using the MEGA program
(V3.1)[43] based on a CLUSTAL multiple alignment and were
bootstrapped 5000 times. The analyzed protein sequences were
selected from eleven vertebrate species, including human, mouse
possum, chicken, frog, tetraodon, fugu, zebrafish, stickleback,
medaka and rainbow trout. The accession numbers are detailed in
Table 2. A more detailed analysis of the trout SOCS9 molecule with
other known fish SOCS5 and SOCS9 molecules was also undertaken
by multiple alignment.
2.2. Real-time PCR quantification of gene expression

The expression of trout SOCS family members as well as
a common reference gene, elongation factor-1a (EF-1a), was
quantified by real-time PCR using CYBR green (Invitrogen) and
a LightCycler 480 real-time PCR system (Roch) as described previ-
ously [15,36]. The primers used for real-time PCR are given in
Table 1 and were pre-tested to ensure that each primer pair could
not amplify genomic DNA using the real-time PCR protocols. For
comparison of the relative expression level of different members of
the SOCS family, a standard was constructed with a mixture of
equal mole amounts of PCR products of each SOCS gene amplified
from cloned plasmids. A serial dilution of the standard was run
along with the cDNA samples in the same 96-well PCR plate and
served as a reference for quantification. The expression level of each
gene was calculated as arbitrary units that had been normalized to
the expression of EF-1a. A fold change was also calculated as the
expression level of each treatment divided by that of the corre-
sponding control.
to 30) Application

ATTAACATATGGGATATTC 30-RACE
TTCTCAACTGAACAG 30-RACE
GATACCTCAGGCTGGT Real-time PCR
TCGCTATACTGGTGG Real-time PCR

GCTGGGATTCTGTG Real-time PCR
CTACACAGTTCC Real-time PCR

AGAAGTGTATTTGAGTC Real-time PCR
CGGAATCTACAACC Real-time PCR

AGATATCAAGCTCAAGG Real-time PCR
TAACGGTGAGGCAG Real-time PCR

ATACTGTAGAAAGGGATGAC Real-time PCR
AAGCGTCATGT Genomic PCR
AGGTTGGGAGTATAAC 50-RACE & genomic PCR
TCACTAGATAGGGAGACA 50-RACE
ATATCCTTTCCCTCCTC Real-time PCR

ACCCAAAGTTTG 30-RACE
AATGTGGCTGGT Real-time PCR & 30-RACE
TCTCCTCCTCAG 50-RACE
GATGTGGTCT 50-RACE
GCTGAAGGTTCC Real-time PCR

TAGTGTTAAGTTAG 50-RACE
TGTGGTTCACTTCC 50-RACE
CTCTCCTCAGACC Real-time PCR
ACCACCTACGA 30-RACE
TATCTTTTGGAGAGCAGCA Real-time PCR
GACTGACAGTGATGC 30-RACE

CGTCGTGGCA Real-time PCR
GACCAAGAGG Real-time PCR

http://www.ncbi.nlm.nih.gov/BLAST
http://www.expasy.org/tools/
http://smart.embl-heidelberg.de/smart/
http://smart.embl-heidelberg.de/smart/


Table 2
Accession numbers of selected sequences of the SOCS family used in this study. The
rainbow trout SOCS members identified in this study are highlighted.

Gene Species Accession#

CISH/SOCS8
CISH Human Q9NSE2
CISH Mouse Q62225
CISH Opossum XP_001378784
CISH Chicken NP_989957
CISH Frog AAI57221
CISH Tetraodon EF195753
CISH Fugu EF195746
CISH Zebrafish EF195760
CISH Stickleback EF371369
CISH Medaka EF544576
SOCS8 Tetraodon EF195758
SOCS8 Zebrafish EF195766
SOCS8 Fugu EF195751
SOCS8 Stickleback EF382413
SOCS8 Medaka EF544585
CISH Rainbow trout AM903340

SOCS1
SOCS1 Human AAY87931
SOCS1 Mouse NP_034026
SOCS1 Opossum XP_001376339
SOCS1 Chicken XP_414929
SOCS1 Frog AAH88083
SOCS1 Tetraodon DQ643956
SOCS1 Zebrafish DQ350479
SOCS1 Fugu DQ643957
SOCS1 Stickleback DQ923044
SOCS1 Medaka EF544577
SOCS1 Rainbow trout AM748721

SOCS2
SOCS2 Human AAH10399
SOCS2 Mouse AAI06154
SOCS2 Opossum XP_001363646
SOCS2 Chicken ZP_989871
SOCS2 Frog EF544587
SOCS2 Tetraodon EF195754
SOCS2 Zebrafish EF195761
SOCS2 Fugu EF195747
SOCS2 Stickleback EF371370
SOCS2 Rainbow trout AM748722

SOCS3
SOCS3 Human O14543
SOCS3 Mouse O35718
SOCS3 Opossum XP_001371144
SOCS3 Chicken Q90X67
SOCS3 Frog Q6DJC0
SOCS3a Tetraodon DQ333314
SOCS3a Zebrafish DQ333315
SOCS3 Fugu DQ335254
SOCS3a Stickleback EF544595
SOCS3a Medaka EF544579
SOCS3b Tetraodon EF544574
SOCS3b Zebrafish DQ345761
SOCS3b Stickleback EF382411
SOCS3b Medaka EF544580
SOCS3 Rainbow trout AM748723

SOCS4
SOCS4 Human Q8WXH5
SOCS4 Mouse NP_543119
SOCS4 Chicken EF544591
SOCS4 Frog AAI23972
SOCS4 Tetraodon EF371365
SOCS4 Zebrafish EF371367
SOCS4 Fugu EF371366
SOCS4 Stickleback EF371368
SOCS4 Medaka EF544581

SOCS5/SOCS9
SOCS5 Human NP_054730
SOCS5 Mouse AAB96648
SOCS5 Opossum XP_001375574
SOCS5 Chicken EF544592

Table 2 (continued)

Gene Species Accession#

SOCS5 Frog NP_001016844
SOCS5 Tetraodon EF195755
SOCS5a Zebrafish EF195763
SOCS5b Zebrafish EF195762
SOCS5 Fugu EF195748
SOCS5 Stickleback EF382412
SOCS5 Medaka EF544582
SOCS9 Tetraodon EF195759
SOCS9 Zebrafish EF195767
SOCS9 Fugu EF195752
SOCS9 Stickleback EF371372
SOCS9 Medaka EF544586
SOCS9 Rainbow trout AM903341

SOCS6
SOCS6 Human Q8WUM3
SOCS6 Mouse NP_061291
SOCS6 Opossum XP_001365964
SOCS6 Chicken EF544593
SOCS6 Frog EF544589
SOCS6 Tetraodon EF195756
SOCS6 Zebrafish EF195764
SOCS6 Fugu EF195749
SOCS6 Stickleback EF371371
SOCS6 Medaka EF544583
SOCS6 Rainbow trout AM903342

SOCS7
SOCS7 Human O14512
SOCS7 Mouse Q8VhQ2
SOCS7 Opossum XP_001366804
SOCS7 Frog EF544590
SOCS7 Tetraodon EF195757
SOCS7 Zebrafish EF195765
SOCS7 Fugu EF195750
SOCS7 Stickleback EF544575
SOCS7 Medaka EF544584
SOCS7 Rainbow trout AM903343
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2.3. Expression of CISH, SOCS6, 7 and 9 in vivo

The selection of tissues, RNA preparation, cDNA synthesis and
real-time PCR analysis of gene expressionwas described previously
[36] and the same set of 6 cDNA samples from 6 individual fish
were used in this study. The real-time quantification of gene
expression was as described above.

2.4. Modulation of expression of trout SOCS family members
in vivo by bacterial infection

Rainbow trout (Mean � SEM ¼ 54.2 � 1.4 g) were challenged
with a pathogenic strain (MT3072) of Yersinia ruckeri, the causative
agent of enteric red mouth disease (ERM). The bacteria were
prepared from a tryptic soy agar plate (Fluke) inoculated with
MT3072 for 2 days at 22 �C, by washing the bacteria three times
with PBS (GIBCO) and re-suspending in PBS at a concentration of
2 � 106 cfu ml�1. Two tanks of fish (30 fish/tank) were acclimatised
to the aquarium facilities for twoweeks before the experiment. Fish
from one tank were injected intraperitoneally (i.p.) with bacteria
(0.5 ml/fish) prepared as above and fish in the second tank were
injected i.p. with phosphate buffered saline (PBS) (0.5 ml/fish) as
controls. The water temperature throughout the experiment was
15 �C, the fish were fed with commercial trout pellets twice a day
and the waste water was sterilized by ozonation. Six fish from each
treatment were sampled at 24 h and 48 h post-injection. Spleen
tissuewas collected and used for total RNA preparation using TRIzol
(Invitrogen).



Table 3
Summary of characteristics and homology analysis of rainbow trout SOCS members
identified in this study relative to other known SOCS molecules. Values in bold are
those with the highest homology.

Trout CISH SOCS9 SOCS6 SOCS7
Accession number AM903340 AM903341 AM903342 AM903343
Amino acids 225 544 515 652
Molecular weight(kDa) 24.8 60.6 58.1 71.5
pI 9.44 6.67 6.07 6.66

Species Molecules Homology (Similarity/Identity%)

Human CISH 51.9/38.6 24.6/14.7 25.4/16.1 19.3/12.7
Mouse CISH 51.0/37.0 23.3/14.7 25.0/15.2 19.6/12.9
Chicken CISH 57.0/40.0 20.8/11.7 26.6/16.4 19.0/11.9
Frog CISH 54.1/41.2 21.7/13.9 26.4/17.2 21.8/13.9
Tetraodon CISH 80.4/65.3 19.9/13.1 22.1/13.0 16.6/11.2
Zebrafish CISH 63.6/52.2 19.9/12.3 18.6/11.9 16.4/10.9
Trout CISH 100/100 18.6/13.1 21.9/12.8 17.5/12.1
Tetraodon SOCS8 58.7/46.5 19.9/10.8 21.0/11.5 17.3/9.9
Zebrafish SOCS8 62.2/47.6 21.0/12.8 19.4/12.6 15.5/10.3
Human SOCS5 20.1/11.8 61.6/43.5 39.2/20.9 31.4/18.4
Mouse SOCS5 20.9/11.8 60.5/44.8 40.1/20.2 31.9/18.3
Chicken SOCS5 20.3/13.4 61.8/44.4 38.6/19.9 33.1/19.6
Frog SOCS5 20.9/14.2 60.7/42.9 38.5/20.1 32.2/18.3
Tetraodon SOCS5a 19.1/14.1 58.5/41.8 36.1/21.1 32.8/19.2
Zebrafish SOCS5a 21.2/14.9 59.8/43.1 34.6/20.3 31.7/18.9
Zebrafish SOCS5b 20.1/13.3 58.8/41.8 37.7/21.4 30.8/18.2
Tetraodon SOCS9 20.4/13.7 80.7/71.7 36.5/22.3 30.1/18.4
Zebrafish SOCS9 20.1/14.8 74.8/62.8 39.6/20.7 31.1/19.2
Trout SOCS9 19.9/12.3 100/100 36.3/20.6 35.3/19.9
Human SOCS6 20.4/12.4 38.6/19.1 75.3/63.9 38.3/25.8
Mouse SOCS6 20.8/12.1 37.5/19.8 73.9/60.9 36.0/26.1
Chicken SOCS6 20.2/12.8 38.8/20.6 77.3/65.5 35.7/24.0
Frog SOCS6 20.3/12.6 38.2/19.5 75.6/63.4 36.0/24.8
Tetraodon SOCS6 21.8/13.2 38.2/20.0 75.1/63.5 36.5/25.1
Zebrafish SOCS6 20.3/12.8 39.5/20.7 79.7/67.0 37.0/24.9
Trout SOCS6 21.9/12.8 36.3/20.6 100/100 37.7/26.2
Human SOCS7 17.4/11.5 34.9/21.5 38.9/25.9 53.2/40.9
Mouse SOCS7 17.6/11.5 35.1/21.2 38.3/25.9 52.8/40.1
Frog SOCS7 21.8/13.9 33.8/20.1 40.6/26.3 48.2/39.8
Tetraodon SOCS7 18.7/12.2 34.9/19.5 41.2/27.3 51.2/40.1
Zebrafish SOCS7 20.0/13.0 34.6/17.7 42.5/28.0 57.5/46.1
Trout SOCS7 17.5/12.1 35.3/19.9 37.7/26.2 100/100
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2.5. Cell lines

A mononuclear/macrophage-like cell line RTS-11 [44], and
a fibroid cell line RTG-2 [45] were cultured in L-15 medium sup-
plemented with either 30% foetal calf serum (FCS) for RTS-11 cells,
or 10% FCS for RTG-2 cells and 100 units ml�1 penicillin,
100 mg ml�1 streptomycin.

2.6. LPS and poly I:C stimulation of RTS-11 cells and splenocytes

To minimize the potential effects of serum protein on LPS, RTS-
11 cells were collected by centrifugation (200 g, 5 min), resus-
pended in maintenance medium (L-15 plus 0.5% FCS), and then
seeded into 6-well plates at 2 � 106 cells/well in 3 ml of mainte-
nance medium. The cells were incubated at 20 �C overnight before
any treatments. The cell culture supernatant was replaced with
maintenance medium containing E. coli LPS (strain 055:B5, Sigma)
at 25 mg ml�1, Poly I:C (Sigma) at 50 mg ml�1 or medium alone as
control, and incubated for a further 4, 11 and 24 h. The treatment
was terminated by dissolving the cells in Trizol (Invitrogen). Simi-
larly, freshly prepared splenocyte primary cultures were stimulated
with LPS or Poly I:C as above, and sampled along with control,
unstimulated cells 4, 8 and 24 h later.

2.7. Stimulation of RTG-2 and RTS-11 cells by PMA
and trout rIL-1b and rIFN-g

For PMA treatment, cells were seeded in L-15 medium con-
taining 10% FCS and incubated at 20 �C overnight. PMA (Sigma) was
prepared at 1 mg ml�1 ethanol and diluted with cell culture
medium before addition to the cell cultures to achieve final
concentrations of 0, 0.5, 5, 50 and 500 ng ml�1 PMA. The treatment
was terminated at 8 h by dissolving the cells in Trizol. As the carrier
ethanol concentration was diluted at least 2000-fold and no
apparent effect on SOCS gene expression was seen in pilot studies
even at the highest concentration, cells without any treatment
were used as controls. The trout rIL-1b and rIFN-g treatment of
RTG-2 and RTS-11 cells was as described previously [36].

2.8. Statistical analysis

Real-time quantitative PCR measurements were analyzed using
the nonparametric ManneWhitney test within the SPSS package
17.0 (SPSS Inc. Chicago, Illinois), with P < 0.05 between treatment
groups and control groups considered significant.

3. Results

3.1. Molecular identification and analysis of trout CISH,
SOCS6, 7 and 9

3.1.1. CISH
Search of the EMBL database revealed that the translation of EST

BX863093 had homology to the N-terminus of mammalian CISH
sequences. Primers CISH F1/F2 (Table 1) designed to the 50-UTR of
this EST were used for 30-RACE PCR using SMART cDNA prepared
from splenic tissue [39]. A 1.3 kb 30-RACE product was cloned and
sequenced and contained part of the 50-UTR, the complete coding
region and the 30-UTR of the trout CISH gene (Accession No.
AM903340). The trout CISH gene encoded for a protein of 225
amino acids, with a theoretical molecular weight of 24.8 kDa and pI
of 9.44. The trout CISH protein had highest homology to CISHs
(including SOCS8) from other fish species (47e65% identity), with
lower homology to higher vertebrate CISH (37e41% identity)
(Table 3).
3.1.2. SOCS6
A 2.4 kb 50-RACE product was obtained using primers SOCS6

R1/R2 (Table 1) designed against the ESTs CU066723 and BX312152.
When sequenced it was found to contain 635 bp of 50-UTR, the
complete coding region and a partial 30-UTR of the SOCS6 cDNA
(Accession No. AM903342). The trout SOCS6 cDNA encoded
a protein of 515 amino acids with a theoretical molecular weight of
58.1 kDa and pI of 6.07. The trout SOCS6 protein shared similar
homology to SOCS6s from other vertebrate species (61e67% iden-
tity) (Table 3). A 2.6 kb PCR product amplified from genomic DNA
using primers SOCS6 F1/R1 was also sequenced, and revealed that
the trout SOCS6 gene had a single intron of 130 bp in the 50-UTR
(Accession No. AM903344). The determination of the intron posi-
tion allowed the design of the cDNA specific primer SOCS6 F, that
was subsequently used for expression studies by real-time PCR.

3.1.3. SOCS7
A 1.4 kb 30-RACE product was obtained using primers SOCS7

F4/F3 (Table 1), designed to the ESTs BX878085 and CA376519.
When sequenced the product was found to contain the C-terminus
of the trout SOCS7 molecule, together with the complete 30-UTR
including a poly A signal 16 bp upstream of the poly A tail. A 1.9 kb
50-RACE product was amplified using primers SOCS7 R1/R2
(Table 1) extending the cDNA sequence to 2951 bp. The trout SOCS7
cDNA (Accession No. AM903343) encoded a protein of 652 amino
acids with a theoretical molecular weight of 71.5 kDa and pI of 6.66.
The trout SOCS7 protein had 40e46% identity to SOCS7s from other
vertebrate species (Table 3).



Fig. 1. An unrooted phylogenetic tree of 98 selected members of the SOCS family
constructed using the neighbour-joining method within the MEGA program. The
sequences analyzed and their accession numbers are given in Table 2, and are chosen
from 3 mammals, one bird, one amphibian and 6 fish. The neighbour-joining tree was
produced from a multiple alignment of full-length amino acid sequences using
CLUSTAL. The complete deletion of gaps/missing data and JTT matrix
(JoneseTayloreThornton) amino acid model options were used. Node values represent
percent bootstrap confidence derived from 5000 replicates. The trout SOCS molecules
are highlighted.
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3.1.4. SOCS9
A1.9 kb 50-RACE product was obtained using primers SOCS9

R2/R3 (Table 1) designed against the EST CA387203. When
sequenced the product was found to contain the 50-UTR, the
complete coding region and a partial 30-UTR of the SOCS9molecule.
A further 30-RACE product of 0.7 kb was obtained using primers
SOCS9 F4/F3 (Table 1) and extended the SOCS9 cDNA sequence to
2.38 kb. The trout SOCS9 cDNA (Accession No. AM903341) encoded
a protein of 544 amino acids, with a theoretical molecular weight of
60.6 kDa and pI of 6.67. The trout SOCS9 protein had 42e45%
identity to SOCS5s from other vertebrate species but higher
homology (63e72% identity) to SOCS9 molecules that appear to be
fish specific [37] (Table 3).

3.2. Sequence analysis and classification of fish SOCS genes

Phylogenetic tree analysis (Fig. 1) of the protein sequences
supported the homology analysis, in ascribing the new SOCS genes
as trout CISH, SOCS6, SOCS7 and SOCS9. The CISH clade, including
the CISH related SOCS8 genes, grouped together with the SOCS1, 2
and 3 molecules, in what has previously been termed the Type II
SOCS subfamily [37]. Trout SOCS6 and SOCS7 grouped with the
other known SOCS6 and SOCS7 as expected, and together form
a subgroup within the Type I subfamily of SOCS molecules. The
SOCS4, 5 and 9 subgroup is more complicated, and whilst the trout
sequence was clearly related to SOCS9 molecules, their relationship
to SOCS4 and SOCS5 has still to be clarified.

A multiple alignment of the trout SOCS protein sequences was
also generated, in combination with a representative of all the
SOCS family molecules now known in fish, using the stickleback
sequences for this purpose (Fig. 2). This revealed clear areas of
conservation within the SH2 domain and SOCS box within all
SOCS molecules, and the more variable N-terminus that contains
the N-terminal extended SH2 subdomain (ESS) and kinase
inhibitory region (KIR) seen in SOCS1 and SOCS3. The alignment
presented did not extend to the full N-terminus of the type I
SOCS molecules in particular due to the difficulty of aligning
sequences of very different lengths in this region (N/B the SOCS1
molecules were only þ42 and þ57 for the stickleback and trout
molecules respectively, in a region that was highly serine rich).
Another notable feature seen in the alignment was an extended
C-terminus in many of the Type I SOCS family members,
including the trout SOCS7 and SOC9 molecules. A more detailed
analysis of the SOCS5 and SOCS9 family members was also per-
formed, using all known fish molecules and representative
tetrapod SOCS5 molecules, to shed light on the relatedness
between these two SOCS groups. This analysis (Fig. 3) showed
that the C-terminal domain containing the SH2 and SOCS box
domains (indicated above the alignment) are highly conserved
among all the SOCS5 and SOCS9 molecules, whilst SOCS5-specific
and SOCS9-specific features can be seen at the N-terminus.

3.3. Tissue distribution of the expression of the trout SOCS genes

The expression of the trout CISH and SOCS6, 7 and 9 genes was
examined in eight tissues, the gills, skin, muscle, liver, spleen, head
kidney, intestine and brain from six healthy trout by real-time PCR
as described previously [15]. The expression of all the four SOCS
genes was detectable in all the tissues examined, with the brain
having the highest levels. In contrast, the liver expressed the lowest
level of SOCS6, 7 and 9, whilst the intestine had the lowest
expression level of CISH. The expression of CISH was higher than
the other three genes in all the tissues examined (Fig. 4). Immune
tissues (gills, head kidney, spleen) had considerable levels of
expression of all four genes examined.



Fig. 2. Multiple alignment of the C-terminal domain of the trout SOCS molecules with the equivalent region of all known fish SOCS molecules from a representative fish species
(stickleback). The multiple alignment was produced using ClustalW. The C-terminal domain contains the SH2 and SOCS box domains (indicated above the alignment), as well as the
KIR and ESS domains in some molecules (eg SOCS1 and SOCS3), and were predicted using the SMART6 program [41]. Dashes (e) indicate gaps in the alignment, asterisks (*) indicate
complete conservation and dots (.) indicate similarity.
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Fig. 3. Multiple alignment of SOCS5 and fish specific SOCS9 molecules. The multiple alignment was produced using ClustalW and boxshaded. Dashes (e) indicate gaps in the
alignment. The SOCS5-specific and SOCS9-specific features are observed at the N-terminus of the molecules but the C-terminal region containing the SH2 and SOCS box domains
(indicated above the alignment) are highly conserved among all the SOCS5 and SOCS9 molecules. The amino acid sequence similarities/identities of trout SOCS9 to the SOCS5 and
SOCS9 molecules from other species are indicated at the end of the alignment.
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Fig. 4. In vivo transcript expression of trout CISH, SOCS6, 7 and 9. The relative
expression level of each SOCS gene in different tissues was expressed as arbitrary units
that were normalized to the expression level of EF-1a. The results are presented as the
mean þ SEM of six fish.
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3.4. Differential regulation of trout SOCS gene expression
by bacterial infection

To investigate if SOCS gene expression could be modulated by
bacterial infection, trout were injected intraperitoneally with PBS
(control) or Y. ruckeri, the causative agent of enteric red mouth
disease, and SOCS gene expression studied in the spleen 24 and
48 h later. Although the expression of all the SOCS genes was
significantly higher at 48 h compared to 24 h, even in the PBS
injected control group, only the expression of CISH and SOCS1 and
3 was specifically up-regulated by bacterial infection (Fig. 5). The
expression level of CISH, SOCS1 and 3 in samples from the infected
fish were some 5, 34 and 44 fold that of the PBS injected control
group at 48 h, respectively. Lastly, the expression levels of all the
A

B

Fig. 5. Modulation of SOCS gene expression in the spleen after Yersinia ruckeri infec-
tion. Rainbow trout were injected intraperitoneally with either 0.5 � 106 cfu Y. ruckeri
(YR) or phosphate buffered saline (PBS), and six trout from each group were sample at
24 h, and 48 h post-injection. The relative expression level of each SOCS gene in the
spleen was expressed as arbitrary units normalized to the expression of EF-1a (A). Fold
changes were calculated by dividing the average expression level of each Y. ruckeri
challenged group by the PBS-challenged group at the same time point (B). The results
are presented as the mean þ SEM of six fish. Symbols above the bars indicate signif-
icant differences (p < 0.05) relative to the respective controls at the same time points.
SOCS genes in the spleen were significantly higher than in normal
unhandled fish (data not shown), and suggests a link between the
operational procedures (injection, handling) and SOCS gene
expression, perhaps contributing to subsequent immune inhibitory
effects often associated with stress.
3.5. Differential regulation of trout SOCS genes in the
monocyte/macrophage cell line RTS-11 and primary
splenocyte cultures by LPS and Poly I:C

The expression levels of different SOCS family members in RTS-
11 cells varied, with SOCS3 having the highest expression level and
CISH the lowest (Fig. 6). There were no significant changes in
expression level of any of the SOCS family members in the control
cells over the time course of the experiment (i.e. 4e24 h of culture).
Poly I:C was a strong stimulator of SOCS1 expression in RTS-11 cells,
giving a 24e357 fold increase. It also significantly up-regulated the
expression of SOCS2 and 3 at the later time points, albeit to a lesser
extent, but significantly down-regulated the expression of SOCS7
and 9 (by 27% in the latter case) after 11 h of treatment. LPS also up-
regulated the expression of SOCS1, 2 and 3 in RTS-11 cells, with
expression levels some 14, 3 and 6 fold higher than control samples
at peak values. Curiously, SOCS1 expression peaked at 4 h, whereas
SOCS3 expression peaked at 11 h and SOCS2 expression at 24 h after
LPS treatment. LPS had no effect on the expression of CISH, SOCS6,
7 or 9 in RTS-11 cells.

In primary splenocyte cultures LPS significantly increased the
expression of CISH, SOCS1 and SOCS2 24 h post-stimulation, with
SOCS1 also increased at 4 h and 8 h post-stimulation (Fig. 7).
A significant decrease in expression of the other SOCS genes was
also seen at the early time points relative to unstimulated cells. In
contrast, Poly I:C stimulation had no effect on splenocyte SOCS
expression.
3.6. Differential expression and modulation of trout SOCS
genes in RTG-2 and RTS-11 cell lines by PMA

As with RTS-11 cells, RTG-2 cells expressed constitutively all
seven SOCS genes, with SOCS3 expression being the highest and
CISH/SOCS2 the lowest (Fig. 8). PMAwas a good stimulator of SOCS
gene expression in RTG-2 cells after 8 h of incubation (Fig. 8A
and C), significantly increasing the expression of SOCS1 (8e18 fold),
SOCS2 (2e4 fold) and SOCS3 (11e24 fold) at all doses
(0.5e500 ng ml�1) tested. The modulation of SOCS gene expression
by PMA in RTS-11 cells was more widespread and also apparently
more dose-dependent. As with RTG-2 cells, the expression of
SOCS1, 2 and 3 was significantly up-regulated at the lowest
(0.5 ng ml�1) and highest (500 ng ml�1) doses used, but was
significantly down-regulated by incubation with 5 ng ml�1. The
lowest dose (0.5 ngml�1) also significantly up-regulated SOCS6 and
9 expression, as did the higher doses of 50 and 500 ng ml�1 for
SOCS9 expression. The fold increase in gene expression were
comparable between the lowest and highest doses used, although
generally higher using 0.5 ng ml�1. For example, SOCS1, 3 and 9
expression increased 4, 9 and 9 fold using 0.5 ng ml�1 PMA and 2, 5
and 6 fold using 500 ng ml�1 PMA. Whilst the expression of SOCS1,
2 and 3 was significantly decreased after treatment with 5 ng ml�1

PMA, the expression of SOCS6, 7, 9 and CISH was unaffected.
Both IFN-g and IL-1b were shown previously to up-regulate the

expression of SOCS1, 2 and 3 in RTG-2 cells, but only IFN-g could
up-regulate these three genes in RTS-11 cells [36]. In this study
neither IFN-g or IL-1b had any significant effects on the expression
of CISH, SOCS6, 7 and 9, in RTG-2 or RTS-11 cells (data not shown).



B

A

Fig. 6. Modulation of SOCS gene expression by LPS and Poly I:C in RTS-11 cells. RTS-11 cells were incubated with LPS (25 mg ml�1) or Poly I:C (50 mg ml�1), or remained unstimulated
(Controls), and were sampled 4, 11 and 24 h later. The relative expression of the trout SOCS genes was detected by real-time PCR, and expression level expressed as arbitrary units
normalized to the expression of EF-1a (A). The mean of three independent replicates is shown for each treatment, and bars indicate the standard error of the means. Fold changes
were calculated by dividing the average expression level of each treatment by that of the respective control (B). Asterisks above the bars indicate significant differences (p < 0.05)
relative to the respective controls at the same time points.
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4. Discussion

In this paper we describe for the first time in rainbow trout
another four members of the SOCS family of molecules, and study
where they are expressed and whether expression can be modu-
lated by commonly used stimulants and by infection. The SOCS
family members identified were CISH and SOCS6, 7 and 9. The
classification of these new trout molecules seemed clear but the
exact relationships of some of the recently described fish specific
SOCS molecules remains to be fully determined. For example, Jin
et al. [37] describe for the first time SOCS3b, 8 and 9, and whilst the
SOCS3b and SOCS8 genes are clearly related to SOCS3 and CISH, and
probably arose via additional gene duplication events from
a common ancestor, the origin of SOCS9 is less clear and compli-
cated by the clustering of the fish SOCS4 molecules to the base of
the tetrapod SOCS4 and SOCS5, and fish SOCS5 and SOCS9 clades in
phylogenetic tree analysis. Nevertheless, the evolutionary history
of these SOCS molecules as proposed by Jin et al. is quite plausible
as they state, even if the SOCS3b, SOCS4 and SOCS5 genes are found
to be absent from trout. Lastly, in zebrafish an additional SOCS gene
duplication is apparent [37], where two SOCS5 genes are present
and to date this appears to be a species specific duplication.

The new trout molecules have various features that are typical of
the different SOCS family subgroups. For example, trout SOCS7 and 9
have a C-terminal extension beyond the SOCS box, as is common in
type I molecules (with fish SOCS9 being in the SOCS4/5 subgroup),
that is lacking in CISH. This appears to be influenced by the interac-
tion of SOCS molecules with Elongin B/C, required for linkage to E3
ligase and subsequent ubiquitination of target proteins for degrada-
tion. Crystal structure determination of type I and II SOCS molecules
within this complex has shown that in type II molecules the
C-terminus is buried, allowing exposure of the N-terminal KIR
domain (in SOCS1/3) and results in an absolute limit on the
C-terminal length [32]. In contrast it is the N-terminus that is buried
in type I molecules. Trout SOCS9 also has an HTQIDYIHC motif
N-terminal of the ESS domain, in common with other SOCS5/9
molecules, and this region in mammals has been postulated to
contain a possible KIR domain [46], similar to the situation with
SOCS1 and 3. Interestingly, the 3 N-terminal amino acids of this
domain differ in SOCS9 compared to the SOCS5 molecules in
mammals/fish, beingWKV in the latter and usually YRI in the former
(as seen in trout and stickleback SOCS9 in Figs. 2 and 3), and it could
be speculated that this may have functional consequences for these
two SOCS. Mammalian SOCS5 is known to be expressed in Th1 cells
and can inhibit IL-4 signalling and Th2 differentiation [47]. In addi-
tion it inhibits EGF receptor signalling [48]. Thus there is potential for
these functions to be performed separately in fish, or that Th polar-
isation is more complex and has additional control pathways.

As with SOCS1-3, CISH and SOCS6, 7 and 9 had a wide tissue
distribution in trout,with liver typically having the lowest expression
level (with the exception of CISH). In Tetraodon particularly high
levels of CISH and SOCS9 were found in the head kidney [37], with



Fig. 7. Modulation of SOCS gene expression by LPS and Poly I:C in splenocytes. Freshly prepared trout splenocytes were incubated with LPS (25 mg ml�1) or Poly I:C (50 mg ml�1), or
remained unstimulated (Controls), and were sampled 4, 8 and 24 h later. The relative expression of the trout SOCS genes was detected by real-time PCR as above, and expression
level was normalized to that of EF-1a and expressed as fold change, where the expression in the control was defined as 1 at each time point for each fish. The mean of three
independent replicates (fish) is shown for each treatment, and bars indicate the standard error of the means. Asterisks above the bars indicate significant differences (p < 0.05)
relative to the respective controls at the same time points.
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Fig. 8. Modulation of SOCS gene expression by PMA in RTG-2 (A, C) and RTS-11 (B, D) cell lines. Different concentrations of PMA, 0 (control) and 0.5e500 ng ml�1, were added to
RTG-2 cells and RTS-11 cells for 8 h prior to RNA extraction. The relative expression (A and B) of the trout SOCS genes, was detected by real-time PCR. Expression level of each SOCS
gene was expressed as arbitrary units normalized to the expression of EF-1a. Fold changes (C and D) were calculated by dividing the average expression level of each treatment by
that of the respective control. The mean of three replicates is shown for each treatment, and bars indicate the standard error of the means. Asterisks above the bars indicate
significant differences (p < 0.05) relative to the respective controls.
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SOCS6 highest in the gonad and SOCS7 being lowly expressed in all
tissues. This was not the case in trout where head kidney expression
levelswere similar tomost other tissues, and SOCS7was expressed at
moderate levels, being approximately equal to SOCS6 and higher
than SOCS9. Injection of Tetraodonwith LPS increased the expression
levels of CISH and SOCS9 (amongst others) in head kidney but had no
effect on SOCS6 (with SOCS7 not expressed in this tissue)[37]. In our
study, where in vitro stimulation of RTS-11 cells or splenocytes was
used, LPS only significantly affected trout CISH and SOCS1-3
expression,with no stimulatoryeffect on any of the newly discovered
trout SOCS. Similarly Poly I:C significantly increased trout SOCS1-3
expression in RTS-11 cells, but had no positive effects on the
expression of any SOCS molecules in splenocytes. However, with
PMA stimulation, whilst a similar result was found for stimulation of
RTG-2 cells, a more complex picture emergedwith RTS-11 cells, with
high and low doses having a stimulatory effect on the expression of
SOCS1-3 but also on SOCS6 and SOCS9, indicating that cell type
specific differences exist in relation to SOCS expression. Lastly, unlike
the previously reported stimulatory effect on SOCS1-3 expression of
incubation of RTG-2 and RTS-11 cells with rIFN-g or RTG-2 cells with
rIL-1b [36], no effect of these cytokines on the expression of the
newly discovered trout SOCS was apparent in either cell line.

To date no studies have looked at the impact of infection on SOCS
gene expression infish. Here a Gramnegative bacteriumwas used for
this purpose, and following injection into fish SOCS expression was
analysed in the spleen 24 h and 48 h later. This showed that itwas the
type II SOCS molecules that were modulated by infection, with CISH
and SOCS3 expression significantly increased at both timepoints, and
SOCS1 expression increased by 48 h post-injection. Whilst not
significant, in fact SOCS2 expression also showed a similar trend. This
result was not particularly surprising since in mammals it is known
that SOCS1, SOCS3 and CISH can be induced by TLR stimulation [31],
where they serve to limit inflammatory responses, although patho-
gens can also induce SOCS expression as ameans of immune evasion
[33]. This was also in agreement with the in vitro stimulation
experiments undertaken here, where with mixed cell suspensions
(i.e. splenocytes) itwas clear that CISH aswell as SOCS1 and 2 are up-
regulated by LPS. Finally, it was also apparent that the expression of
all the SOCS molecules increased with time post-injection, and that
this may have been a consequence of the handling procedures, and
hence linked to a potential sensitivity of SOCS genes to mediators
involved in other physiological pathways.

In conclusion, we have discovered another four members of the
trout SOCS gene family, and studied their expression in relation to
the already known SOCS1-3 in this species. It is apparent that the
type II SOCS genes are particularly relevant to immune regulation in
fish, although the intriguing expansion of the SOC4/5 subgroup in
fish requires further investigation as to their role and functional
divergence.
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