6 research outputs found

    Mitosis in Cancer Cell Increases Immune Resistance via High Expression of HLA-G and PD-L1

    No full text
    Cancer is a result of “aggressive” division and uncontrolled proliferation of the abnormal cells that survive attack by immune cells. We investigated the expression of HLA-G and PD-L1 with the different stages of cancer cell division along with their role in the interaction of immune cells in vitro. Ovarian cancer (OVCAR-3) and chronic myeloid leukemia cell line (K-562) are used for this study. The correlation of protein expression with percentage of cells in each phase (G1, S and G2 phase) was evaluated through FACS. Cells were synchronized in G1, G2 and mitotic phase to evaluate gene (RT-qPCR) and protein expression (FACS). Real-time immune cell attack (RTICA) analysis with PBMCs (peripheral blood mono-nuclear cells) and cancer cells were performed. We found that cells expressing higher levels of HLA-G and PD-L1 are mainly in G2 phase and those expressing lower levels are mainly in G1 phase. Evidently, the higher expression of the two proteins was observed when synchronized in mitotic phase as compared to low expression when synchronized in G1 phase. RTICA analysis showed the presence of HLA-G delayed the lysis of the cells. In conclusion, the cancer cell can escape from immune cells in division stage that suggests the impact of mitosis index for cancer immunotherapy

    Differential Expression of Genes Involved in Metabolism and Immune Response in Diffuse and Intestinal Gastric Cancers, a Pilot Ptudy

    No full text
    Gastric cancer (GC) is one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including intestinal and diffuse GC. The incidence of diffuse GCs, often associated with poor overall survival, has constantly increased in USA and Europe The molecular basis of diffuse GC aggressivity remains unclear. Using mRNA from diffuse and intestinal GC tumor samples of a Western cohort, this study reports the expression level of the immunomodulatory aryl-hydrocarbon receptor (AhR), and genes involved in immune suppression (PD1, PD-L1, PD-L2) and the early steps of tryptophan metabolism (IDO1, IDO2, TDO2). Strongly increased expression of IDO1 (p PD1 (p 0.003) was observed in the intestinal sub-type. The highest expression of IDO1 and PDL1 correlated with early clinical stage and absence of lymphatic invasion (×25 p = 0.004, ×3 p = 0.04, respectively). Our results suggest that kynurenine, produced by tryptophan catabolism, and AhR activation play a central role in creating an immunosuppressive environment. Correspondingly, as compared to intestinal GCs, expression levels of IDO1-TDO2 and PD-L1 were less prominent in diffuse GCs which also had less infiltration of immune cells, suggesting an inactive immune response in the advanced diffuse GC. Confirmation of these patterns of gene expression will require a larger cohort of early and advanced stages of diffuse GC samples

    Discontinuous Schedule of Bevacizumab in Colorectal Cancer Induces Accelerated Tumor Growth and Phenotypic Changes

    No full text
    Antiangiogenics administration in colorectal cancer patients seemed promising therapeutic approach. Inspite of early encouraging results, it however gave only modest clinical benefits. When AAG was administered with discontinuous schedule, the disease showed acceleration in certain cases. Though resistance to AAG has been extensively studied, it is not documented for discontinuous schedules. To simulate clinical situations, we subjected a patient-derived CRC subcutaneous xenograft in mice to three different protocols: 1) AAG (bevacizumab) treatment for 30 days (group A) (group B was the control), 2) bevacizumab treatment for 50 days (group C) and bevacizumab for 30 days and 20 without treatment (group D), and 3) bevacizumab treatment for 70 days (group E) and 70 days treatment with a drug-break period between day 30 and 50 (group F). The tumor growth was monitored, and at sacrifice, the vascularity of tumors was measured and the proangiogenic factors quantified. Tumor phenotype was studied by quantifying cancer stem cells. Interrupting bevacizumab during treatment accelerated tumor growth and revascularization. A significant increase of proangiogenic factors was observed when therapy was stopped. On withdrawal of bevacizumab, as also after the drug-break period, the plasmatic VEGF increased significantly. Similarly, a notable increase of CSCs after the withdrawal and drug-break period of bevacizumab was observed (P<.01). The present study indicates that bevacizumab treatment needs to be maintained because discontinuous schedules tend to trigger tumor regrowth, and increase tumor resistance and CSC heterogeneity

    Development of a Novel Orthotopic Primary Human Chordoma Xenograft Model: A Relevant Support for Future Research on Chordoma

    No full text
    International audienceChordomas are slow-growing rare malignant neoplasms. The aim of this study was to establish a primary model of chordoma in the lumbosacral orthotopic area, to compare the growth rate to the subcutaneous site, and to show that this new graft site optimizes tumor growth and bony invasion. Eleven chordoma samples were transplanted subcutaneously in the flank and/or in contact with the lumbosacral region and grown into nude mice. Engraftment rate was significantly more successful in the lumbosacral environment compared with the flank at P0. Two xenografts from 2 patients showed bone invasion. One tumor was maintained through multiple rounds of serial transplantation, creating a model for study. Histological and immunostaining analysis confirmed that tumor grafts recapitulated the primary tumor from which they were derived, consisting of a myxoid chordoma expressing brachyury, cytokeratin AE1, EMA, and VEGF. Clear destruction of the bone by the tumor cells could be demonstrated. Molecular studies revealed PIK3CA and PTEN mutations involved in PI3K signaling pathway and most of the frequently reported chromosomal alterations. We present a novel orthotopic primary xenograft model of chordoma implanted for the first time in the lumbosacral area showing bone invasion, PIK3CA, and PTEN mutations that will facilitate preclinical studies

    Magnetic Compression of Tumor Spheroids Increases Cell Proliferation In Vitro and Cancer Progression In Vivo

    No full text
    International audienceA growing tumor is submitted to ever-evolving mechanical stress. Endoscopic procedures add additional constraints. However, the impact of mechanical forces on cancer progression is still debated. Herein, a set of magnetic methods is proposed to form tumor spheroids and to subject them to remote deformation, mimicking stent-imposed compression. Upon application of a permanent magnet, the magnetic tumor spheroids (formed from colon cancer cells or from glioblastoma cells) are compressed by 50% of their initial diameters. Such significant deformation triggers an increase in the spheroid proliferation for both cell lines, correlated with an increase in the number of proliferating cells toward its center and associated with an overexpression of the matrix metalloproteinase−9 (MMP−9). In vivo peritoneal injection of the spheroids made from colon cancer cells confirmed the increased aggressiveness of the compressed spheroids, with almost a doubling of the peritoneal cancer index (PCI), as compared with non-stimulated spheroids. Moreover, liver metastasis of labeled cells was observed only in animals grafted with stimulated spheroids. Altogether, these results demonstrate that a large compression of tumor spheroids enhances cancer proliferation and metastatic process and could have implications in clinical procedures where tumor compression plays a role

    CRIPTO overexpression promotes mesenchymal differentiation in prostate carcinoma cells through parallel regulation of AKT and FGFR activities

    No full text
    Members of the EGF-CFC (Cripto, FRL-1, Cryptic) protein family are increasingly recognized as key mediators of cell movement and cell differentiation during vertebrate embryogenesis. The founding member of this protein family, CRIPTO, is overexpressed in various human carcinomas. Yet, the biological role of CRIPTO in this setting remains unclear. Here, we find CRIPTO expression as especially high in a subgroup of primary prostate carcinomas with poorer outcome, wherein resides cancer cell clones with mesenchymal traits. Experimental studies in PCa models showed that one notable function of CRIPTO expression in prostate carcinoma cells may be to augment PI3K/AKT and FGFR1 signaling, which promotes epithelial-mesenchymal transition and sustains a mesenchymal state. In the observed signaling events, FGFR1 appears to function parallel to AKT, and the two pathways act cooperatively to enhance migratory, invasive and transformation properties specifically in the CRIPTO overexpressing cells. Collectively, these findings suggest a novel molecular network, involving CRIPTO, AKT, and FGFR signaling, in favor of the emergence of mesenchymal-like cancer cells during the development of aggressive prostate tumors
    corecore