121 research outputs found

    Organic Derivatives of Mercury and Tin as Promoters of Membrane Lipid Peroxidation

    Get PDF
    The toxicity mechanisms of mercury and tin organic derivatives are still under debate. Generally the presence of organic moieties in their molecules makes these compounds lipophilic and membrane active species. The recent results suggest that Hg and Sn compounds deplete HS-groups in proteins, glutathione and glutathione-dependent enzymatic systems; this process also results in the production of reactive oxygen species (ROS), the enhancement of membrane lipids peroxidation and damage of the antioxidative defence system. The goal of this review is to present recent results in the studies oriented towards the role of organomercury and organotin compounds in the xenobiotic-mediated enhancement of radical production and hence in the promotion of cell damage as a result of enhanced lipids peroxidation. Moreover the conception of the carbon to metal bond cleavage that leads to the generation of reactive organic radicals is discussed as one of the mechanisms of mercury and tin organic derivatives toxicity. The possible use of natural and synthetic antioxidants as detoxification agents is described. The data collected recently and presented here are fundamentally important to recognizing the difference between the role of metal center and of organic fragments in the biochemical behavior of organomercury and organotin compounds in their interaction with primary biological targets when entering a living organism

    Comprehensive Study on Tool Wear During Machining of Fibre-Reinforced Polymeric Composites

    Get PDF
    © 2021 Springer-Verlag. The final publication is available at Springer via https://dx.doi.org/10.1007/978-981-33-4153-1.The use of fibre reinforced polymeric (FRP) composites has increased rapidly, especially in many manufacturing (aerospace, automobile and construction) industries. The machining of composite materials is an important manufacturing process. It has attracted several studies over the last decades. Tool wear is a key factor that contributes to the cost of the machining process annually. It occurs due to sudden geometrical damage, frictional force and temperature rise at the tool-work interaction region. Moreover, tool wear is an inevitable, gradual and complex phenomenon. It often causes machined-induced damage on the workpiece/FRP composite materials. Considering the geometry of drill, tool wear may occur at the flank face, rake face and/or cutting edge. There are several factors affecting the tool wear. These include, but are not limited to, drilling parameters and environments/conditions, drill/tool materials and geometries, FRP composite compositions and machining techniques. Hence, this chapter focuses on drilling parameters, tool materials and geometries, drilling environments, types of tool wear, mechanisms of tool wear and methods of measurement of wear, effects of wear on machining of composite materials and preventive measures against rapid drill wear. Conclusively, some future perspectives or outlooks concerning the use of drill tools and their associated wears are elucidated, especially with the advancement in science and technology.Peer reviewedFinal Accepted Versio

    Theory of magnetoelectric resonance in two-dimensional S=3/2S=3/2 antiferromagnet Ba2CoGe2O7{\rm Ba_2CoGe_2O_7} via spin-dependent metal-ligand hybridization mechanism

    Full text link
    We investigate magnetic excitations in an S=3/2S=3/2 Heisenberg model representing two-dimensional antiferromagnet Ba2CoGe2O7{\rm Ba_2CoGe_2O_7}. In terahertz absorption experiment of the compound, Goldstone mode as well as novel magnetic excitations, conventional magnetic resonance at 2 meV and both electric- and magnetic-active excitation at 4 meV, have been observed. By introducing a hard uniaxial anisotropy term Λ(Sz)2\Lambda (S^z)^2, three modes can be explained naturally. We also indicate that, via the spin-dependent metal-ligand hybridization mechanism, the 4 meV excitation is an electric-active mode through the coupling between spin and electric-dipole. Moreover, at 4 meV excitation, an interference between magnetic and electric responses emerges as a cross correlated effect. Such cross correlation effects explain the non-reciprocal linear directional dichroism observed in Ba2CoGe2O7{\rm Ba_2CoGe_2O_7}.Comment: 5 pages, 3 figure

    Anomalous Spin Response in Non-centrosymmetric Compounds

    Full text link
    We examine static spin susceptibilities χαβ(q)\chi_{\alpha\beta}({\bf q}) of spin components SαS_{\alpha} and SβS_{\beta} in the non-centrosymmetric tetragonal system. These show anomalous momentum dependences like χxx(q)χyy(q)qx2qy2\chi_{xx}({\bf q})-\chi_{yy}({\bf q})\sim q_x^2-q_y^2 and χxy(q)+χyx(q)qxqy\chi_{xy}({\bf q})+\chi_{yx}({\bf q})\sim q_x q_y, which vanish in centrosymmetric systems. The magnitudes of the anomalous spin susceptibilities are enhanced by the on-site Coulomb interaction, especially, around an ordering wave vector. The significant and anomalous momentum dependences of these susceptibilities are explained by a group theoretical analysis. As the direct probe of the anomalous spin susceptibility, we propose a polarized neutron scattering experiment.Comment: 4 pages, 1 table, 4 figure

    The Orbital Order Parameter in La0.95Sr0.05MnO3 probed by Electron Spin Resonance

    Full text link
    The temperature dependence of the electron-spin resonance linewidth in La0.95Sr0.05MnO3 has been determined and analyzed in the paramagnetic regime across the orbital ordering transition. From the temperature dependence and the anisotropy of linewidth and gg-value the orbital order can be unambiguously determined via the mixing angle of the wave functions of the ege_{\rm g}-doublet. The linewidth shows a similar evolution with temperature as resonant x-ray scattering results

    Observation of the Transverse Optical Plasmon in SmLa0.8Sr0.2CuO4-d

    Full text link
    We present microwave and infrared measurements on SmLa0.8Sr0.2CuO4-d, which are direct evidence for the existence of a transverse optical plasma mode, observed as a peak in the c-axis optical conductivity. This mode appears as a consequence of the existence of two different intrinsic Josephson couplings between the CuO2 layers, one with a Sm2O2 block layer, and the other one with a (La,Sr)O block layer. From the frequencies and the intensities of the collective modes we determine the value of the compressibility of the two dimensional electron fluid in the copper oxygen planes.Comment: REVTeX, 4 pages, 5 eps-figures, PRL, in pres

    Crystal Field and Dzyaloshinsky-Moriya Interaction in orbitally ordered La_{0.95}Sr_{0.05}MnO_3: An ESR Study

    Full text link
    We present a comprehensive analysis of Dzyaloshinsky-Moriya interaction and crystal-field parameters using the angular dependence of the paramagnetic resonance shift and linewidth in single crystals of La_{0.95}Sr_{0.05}MnO_3 within the orthorhombic Jahn-Teller distorted phase. The Dzyaloshinsky-Moriya interaction (~ 1K) results from the tilting of the MnO_6 octahedra against each other. The crystal-field parameters D and E are found to be of comparable magnitude (~ 1K) with D ~= -E. This indicates a strong mixing of the |3z^2-r^2> and |x^2-y^2> states for the real orbital configuration.Comment: 12 pages, 6 figure

    Interplane Transport and Superfluid Density in Layered Superconductors

    Full text link
    We report on generic trends in the behavior of the interlayer penetration depth λc\lambda_c of several different classes of quasi two-dimensional superconductors including cuprates, Sr2_2RuO4_4, transition metal dichalcogenides and organic materials of the (BEDTTTF)2X(BEDT-TTF)_2X-series. Analysis of these trends reveals two distinct patterns in the scaling between the values of λc\lambda_c and the magnitude of the DC conductivity: one realized in the systems with a Fermi liquid (FL) ground state and the other seen in systems with a marked deviation from the FL response. The latter pattern is found primarily in under-doped cuprates and indicates a dramatic enhancement (factor 102\simeq 10^2) of the energy scale ΩC\Omega_C associated with the formation of the condensate compared to the data for the FL materials. We discuss implications of these results for the understanding of pairing in high-TcT_c cuprates.Comment: 4 pages, 2 figure
    corecore