268 research outputs found

    Prey switching with a linear preference trade-off

    Get PDF
    In ecology, prey switching refers to a predator's adaptive change of habitat or diet in response to prey abundance. In this paper, we study piecewise-smooth models of predator-prey interactions with a linear trade-off in a predator's prey preference. We consider optimally foraging predators and derive a model for a 1 predator-2 prey interaction with a tilted switching manifold between the two sides of discontinuous vector fields. We show that the 1 predator-2 prey system undergoes a novel adding-sliding-like (center to two-part periodic orbit; “C2PO'') bifurcation in which the prey ratio transitions from constant to time-dependent. Farther away from the bifurcation point, the period of the oscillating prey ratio doubles, which suggests a possible cascade to chaos. We compare our model predictions with data on freshwater plankton, and we successfully capture the periodicity in the ratio between the predator's preferred and alternative prey types. Our study suggests that it is useful to investigate prey ratio as a possible indicator of how population dynamics can be influenced by ecosystem diversity

    Dynamische HĂĽftschraube

    Get PDF

    Incorporation of tetrahedral ferric iron in hydrous ringwoodite

    Get PDF
    Hydrous Fo_{91} ringwoodite crystals were synthesized at 20 GPa and high-temperature conditions using a multi-anvil press. Recovered crystals were analyzed using electron microprobe analysis, Raman spectroscopy, infrared spectroscopy, synchrotron Mössbauer spectroscopy, single-crystal X-ray diffraction, and single-crystal Laue neutron diffraction, to carefully characterize the chemistry and crystallography of the samples. Analysis of the combined data sets provides evidence for the presence of tetrahedrally coordinated ferric iron and multiple hydrogen incorporation mechanisms within these blue-colored iron-bearing ringwoodite crystals. Tetrahedral ferric iron is coupled with cation disorder of silicon onto the octahedrally coordinated site. Cation disorder in mantle ringwoodite minerals may be promoted in the presence of water, which could have implications for current models of seismic velocities within the transition zone. Additionally, the presence of tetrahedrally coordinated ferric iron may cause the blue color of many ringwoodite and other high-pressure crystals

    Achirality in the low temperature structure and lattice modes of tris(acetylacetonate)iron(iii)

    Get PDF
    Tris(acetylacteonate) iron(III) is a relatively ubiquitous mononuclear inorganic coordination complex. The bidentate nature of the three acetylacteonate ligands coordinating around a single centre inevitably leads to structural isomeric forms, however whether or not this relates to chirality in the solid state has been questioned in the literature. Variable temperature neutron diffraction data down to T = 3 K, highlights the dynamic nature of the ligand environment, including the motions of the hydrogen atoms. The Fourier transform of the molecular dynamics simulation based on the experimentally determined structure was shown to closely reproduce the low temperature vibrational density of states obtained using inelastic neutron scattering

    Inferring parameters of prey switching in a 1 predator–2 prey plankton system with a linear preference tradeoff

    Get PDF
    We construct two ordinary-differential-equation models of a predator feeding adaptively on two prey types, and we evaluate the models' ability to fit data on freshwater plankton. We model the predator's switch from one prey to the other in two different ways: (1) smooth switching using a hyperbolic tangent function; and (2) by incorporating a parameter that changes abruptly across the switching boundary as a system variable that is coupled to the population dynamics. We conduct linear stability analyses, use approximate Bayesian computation (ABC) combined with a population Monte Carlo (PMC) method to fit model parameters, and compare model predictions quantitatively to data for ciliate predators and their two algal prey groups collected from Lake Constance on the German--Swiss--Austrian border. We show that the two models fit the data well when the smooth transition is steep, supporting the simplifying assumption of a discontinuous prey switching behavior for this scenario. We thus conclude that prey switching is a possible mechanistic explanation for the observed ciliate--algae dynamics in Lake Constance in spring, but that these data cannot distinguish between the details of prey switching that are encoded in these different models

    Inferring parameters of prey switching in a 1 predator–2 prey plankton system with a linear preference tradeoff

    Get PDF
    We construct two ordinary-differential-equation models of a predator feeding adaptively on two prey types, and we evaluate the models’ ability to fit data on freshwater plankton. We model the predator’s switch from one prey to the other in two different ways: (i) smooth switching using a hyperbolic tangent function; and (ii) by incorporating a parameter that changes abruptly across the switching boundary as a system variable that is coupled to the population dynamics. We conduct linear stability analyses, use approximate Bayesian computation (ABC) combined with a population Monte Carlo (PMC) method to fit model parameters, and compare model results quantitatively to data for ciliate predators and their two algal prey groups collected from Lake Constance on the German–Swiss–Austrian border. We show that the two models fit the data well when the smooth transition is steep, supporting the simplifying assumption of a discontinuous prey switching behavior for this scenario. We thus conclude that prey switching is a possible mechanistic explanation for the observed ciliate–algae dynamics in Lake Constance in spring, but that these data cannot distinguish between the details of prey switching that are encoded in these different models

    Interpretation of uniocular and binocular trials of glaucoma medications: an observational case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To predict the effectiveness of topical glaucoma medications based on initial uniocular and binocular treatment. To test a traditional hypothesis that effectiveness following a uniocular trial is associated with the change in IOP in the initially treated eye minus the change in the initially untreated eye. To determine whether uniocular or binocular treatment trials are superior.</p> <p>Methods</p> <p>Based on a review of medical records, we identified 168 instances in 154 patients with bilateral primary open angle glaucoma of initial uniocular use of a topical glaucoma medication with well-documented intraocular pressure (IOP) readings at baseline (IOP<sub>A</sub>), during the trial (IOP<sub>B</sub>), and at follow-up (IOP<sub>C</sub>). Abstracted data included demographic data, IOP, and medication use. Predictors of the IOP following the trial (IOP<sub>C</sub>) in each eye were identified by multivariable linear regression. In 70 cases, the predictive ability of initial uniocular and binocular treatment could be directly compared.</p> <p>Results</p> <p>In a multivariable analysis, the follow-up pressure in the initially treated eye (IOP<sub>1C</sub>) was directly correlated with treated eye IOP during initial uniocular use (IOP<sub>1B</sub>, p < 0.001). In a multivariable analysis, the follow-up pressure in the initially untreated eye (IOP<sub>2C</sub>) was directly correlated with its baseline IOP<sub>2A </sub>(p < 0.001), and also tended to be associated with treated IOP<sub>1B </sub>(p = 0.07). The multivariable regression coefficient (b) for the IOP change in the initially untreated eye was generally not close to the value of -1 expected by the classic teaching (for eye 1, b = 0.04, p = 0.35; for eye 2, b = 0.07, p = 0.50). In 70 cases, the uniocular and binocular trials predicted a similar fraction of the variance in follow-up IOP<sub>1C </sub>(r<sup>2 </sup>= 0.56 and 0.57, respectively) and IOP<sub>2C </sub>(r<sup>2 </sup>= 0.39 and 0.38, respectively).</p> <p>Conclusion</p> <p>1) For uniocular trials, the IOP change in the untreated eye should not be subtracted from that in the treated eye. 2) Uniocular and binocular trials have similar predictive value when interpreted correctly. Either may be selected based on clinical circumstances.</p
    • …
    corecore