4 research outputs found
Use of a Cytosponge biomarker panel to prioritise endoscopic Barrett's oesophagus surveillance: a cross-sectional study followed by a real-world prospective pilot
Background
Endoscopic surveillance is recommended for patients with Barrett's oesophagus because, although the progression risk is low, endoscopic intervention is highly effective for high-grade dysplasia and cancer. However, repeated endoscopy has associated harms and access has been limited during the COVID-19 pandemic. We aimed to evaluate the role of a non-endoscopic device (Cytosponge) coupled with laboratory biomarkers and clinical factors to prioritise endoscopy for Barrett's oesophagus.
Methods
We first conducted a retrospective, multicentre, cross-sectional study in patients older than 18 years who were having endoscopic surveillance for Barrett's oesophagus (with intestinal metaplasia confirmed by TFF3 and a minimum Barrett's segment length of 1 cm [circumferential or tongues by the Prague C and M criteria]). All patients had received the Cytosponge and confirmatory endoscopy during the BEST2 (ISRCTN12730505) and BEST3 (ISRCTN68382401) clinical trials, from July 7, 2011, to April 1, 2019 (UK Clinical Research Network Study Portfolio 9461). Participants were divided into training (n=557) and validation (n=334) cohorts to identify optimal risk groups. The biomarkers evaluated were overexpression of p53, cellular atypia, and 17 clinical demographic variables. Endoscopic biopsy diagnosis of high-grade dysplasia or cancer was the primary endpoint. Clinical feasibility of a decision tree for Cytosponge triage was evaluated in a real-world prospective cohort from Aug 27, 2020 (DELTA; ISRCTN91655550; n=223), in response to COVID-19 and the need to provide an alternative to endoscopic surveillance.
Findings
The prevalence of high-grade dysplasia or cancer determined by the current gold standard of endoscopic biopsy was 17% (92 of 557 patients) in the training cohort and 10% (35 of 344) in the validation cohort. From the new biomarker analysis, three risk groups were identified: high risk, defined as atypia or p53 overexpression or both on Cytosponge; moderate risk, defined by the presence of a clinical risk factor (age, sex, and segment length); and low risk, defined as Cytosponge-negative and no clinical risk factors. The risk of high-grade dysplasia or intramucosal cancer in the high-risk group was 52% (68 of 132 patients) in the training cohort and 41% (31 of 75) in the validation cohort, compared with 2% (five of 210) and 1% (two of 185) in the low-risk group, respectively. In the real-world setting, Cytosponge results prospectively identified 39 (17%) of 223 patients as high risk (atypia or p53 overexpression, or both) requiring endoscopy, among whom the positive predictive value was 31% (12 of 39 patients) for high-grade dysplasia or intramucosal cancer and 44% (17 of 39) for any grade of dysplasia.
Interpretation
Cytosponge atypia, p53 overexpression, and clinical risk factors (age, sex, and segment length) could be used to prioritise patients for endoscopy. Further investigation could validate their use in clinical practice and lead to a substantial reduction in endoscopy procedures compared with current surveillance pathways
Effect of colonoscopy screening on risks of colorectal cancer and related death: instrumental variable estimation of per-protocol effects
Computer aided detection and diagnosis of polyps in adult patients undergoing colonoscopy: a living clinical practice guideline
\ua9 Published by the BMJ Publishing Group Limited.Clinical question: In adult patients undergoing colonoscopy for any indication (screening, surveillance, follow-up of positive faecal immunochemical testing, or gastrointestinal symptoms such as blood in the stools) what are the benefits and harms of computer-aided detection (CADe)? Context and current practice: Colorectal cancer (CRC), the third most common cancer and the second leading cause of cancer-related death globally, typically arises from adenomatous polyps. Detection and removal of polyps during colonoscopy can reduce the risk of cancer. CADe systems use artificial intelligence (AI) to assist endoscopists by analysing real-time colonoscopy images to detect potential polyps. Despite their increasing use in clinical practice, guideline recommendations that carefully balance all patient-important outcomes remain unavailable. In this first iteration of a living guideline, we address the use of CADe at the level of an individual patient. Evidence: Evidence for this recommendation is drawn from a living systematic review of 44 randomised controlled trials (RCTs) involving more than 30 000 participants and a companion microsimulation study simulating 10 year follow-up for 100 000 individuals aged 60-69 years to assess the impact of CADe on patient-important outcomes. While no direct evidence was found for critical outcomes of colorectal cancer incidence and post-colonoscopy cancer incidence, low certainty data from the trials indicate that CADe may increase positive endoscopy findings. The microsimulation modelling, however, suggests little to no effect on CRC incidence, CRC-related mortality, or colonoscopy-related complications (perforation and bleeding) over the 10 year follow-up period, although low certainty evidence indicates CADe may increase the number of colonoscopies performed per patient. A review of values and preferences identified that patients value mortality reduction and quality of care but worry about increased anxiety, overdiagnosis, and more frequent surveillance. Recommendation: For adults who have agreed to undergo colonoscopy, we suggest against the routine use of CADe (weak recommendation). How this guideline was created: An international panel, including three patient partners, 11 healthcare providers, and seven methodologists, deemed by MAGIC and The BMJ to have no relevant competing interests, developed this recommendation. For this guideline the panel took an individual patient approach. The panel started by defining the clinical question in PICO format, and prioritised outcomes including CRC incidence and mortality. Based on the linked systematic review and microsimulation study, the panel sought to balance the benefits, harms, and burdens of CADe and assumed patient preferences when making this recommendation Understanding the recommendation: The guideline panel found the benefits of CADe on critical outcomes, such as CRC incidence and post-colonoscopy cancer incidence, over a 10 year follow up period to be highly uncertain. Low certainty evidence suggests little to no impact on CRC-related mortality, while the potential burdens - including more frequent surveillance colonoscopies - are likely to affect many patients. Given the small and uncertain benefits and the likelihood of burdens, the panel issued a weak recommendation against routine CADe use. The panel acknowledges the anticipated variability in values and preferences among patients and clinicians when considering these uncertain benefits and potential burdens. In healthcare settings where CADe is available, individual decision making may be appropriate. Updates: This is the first iteration of a living practice guideline. The panel will update this living guideline if ongoing evidence surveillance identifies new CADe trial data that substantially alters our conclusions about CRC incidence, mortality, or burdens, or studies that increase our certainty in values and preferences of individual patients. Updates will provide recommendations on the use of CADe from a healthcare systems perspective (including resource use, acceptability, feasibility, and equity), as well as the combined use of CADe and computer aided diagnosis (CADx). Users can access the latest guideline version and supporting evidence on MAGICapp, with updates periodically published in The BMJ
