5 research outputs found

    Emplacement of the Foy, Hess and Pele Offset Dykes at the Sudbury impact structure, Canada

    Get PDF
    The 1.85 Ga Sudbury impact structure is the remnant of what is generally considered to have been an ~150–200 km diameter impact basin in central Ontario, Canada. The so-called Offset Dykes are impact melt dykes that are found concentrically around – and extending radially outward from – the Sudbury Igneous Complex (SIC), a ~3 km thick differentiated impact melt sheet. The dykes are typically composed of two main phases of granodiorite: an inclusion- and sulfide-rich granodiorite in the centre of the dyke, and an inclusion- and sulfide-poor granodiorite along the margins of the dyke. This study uses a combination of field mapping, petrography, electron microprobe analyses and geochemical data to address two outstanding questions regarding the temporal relationships of the Offset Dykes: (1) When were the Offset Dykes emplaced relative to the impact cratering process and differentiation of the SIC and; (2) What is the relationship between the internal phases of the Offset Dykes (i.e., inclusion-rich and inclusion-poor granodiorite). New exposures of the Foy and Hess Offset dykes, along with the recent discovery of the Pele Offset Dyke, provide an excellent opportunity to understand the relationship between the Offset Dykes in the North Range of the SIC. From this research, a number of conclusions can be drawn: (1) The Foy and Hess were intruded after the SIC had undergone some degree of differentiation; (2) The Hess is slightly less evolved than the Foy with respect to the SIC, but the two dykes co-existed as melts and mixed at the intersection; (3) The Foy was likely emplaced during a single prolonged event, which carried the clasts and sulfides, and subsequent flow differentiation moved the clasts and sulfides towards the centre of the dyke, forming the inclusion-poor and inclusion-rich phases and; (4) The Pele is composed of only the inclusion-poor phase, is chemically more evolved than the other North Range Offset Dykes, and may have been one of the last Offset Dykes to have been emplaced. These results suggest that emplacement of the Offset Dykes took place over an extended period of time and not as a single early injection event

    The Pele Offset Dykes, Sudbury impact structure, Canada

    No full text
    The Offset Dykes are impact-melt bearing dykes related to the 1.85 Ga Sudbury impact structure. Currently, the dykes extend radially outward from – or occur concentrically around – the Sudbury Igneous Complex, which is the remnant of a differentiated impact melt sheet and the source of the dykes. The recently identified three Pele Offset Dykes intrude into the Archean rocks north of the Sudbury Igneous Complex. In this study, the Pele dykes are characterized for the first time by a combination of fieldwork, optical microscopy, electron microprobe analyses, and bulk geochemical analyses. The Pele Offset Dykes stand out from the other Offset Dykes at Sudbury in two significant ways: (1) All other known Offset Dykes consist of an inclusion-rich lithology in the centre of the dyke and an inclusion-poor lithology along the margins. The Pele dykes, however, are only composed of the inclusion-poor phase. (2) The Pele dykes – particularly the Central and Eastern dykes – have a more evolved chemical composition relative to the other Offset Dykes. These observations suggest that the Pele dykes were emplaced after the other known Offset Dykes during two injection events: the Western followed by the Central and Eastern Pele dykes.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Igneous Rocks Formed by Hypervelocity Impact

    No full text
    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, arewell-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, andwill continue to affect, all planetary objectswith a solid surface,whether that be rock or ice. It is nowrecognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe howand whymelts are generated during impact events and howimpactmelting differs fromendogenic igneous processes.While the processmay differ,we showthat the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen andmicroscopic scale, such rocks can displaymineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, aswell as features such as vesicles, flowtextures, and so on.Historically, these similarities led to themisidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not be possible and all that may be available is remote sensing data.While the interpretation of some impact melt rocks may be relatively straightforward (e.g., for clast-rich varieties and those with clear projectile contamination) we conclude that distinguishing between impact and endogenic igneous rocks is a non-trivial task that ultimately may require sample investigation and analysis to be conducted. Caution is, therefore, urged in the interpretation of igneous rocks on planetary surfaces

    CanMars mission Science Team operational results: implications for operations and the sample selection process for Mars Sample Return (MSR)

    No full text
    The CanMars Mars sample return (MSR) analogue mission was conducted as a field and operational test for the Mars 2020 sample cache rover mission and was the most realistic known MSR rover analogue mission to-date. A rover — similar in scale to that of rover planned for NASA's Mars 2020 mission — was deployed to a scientifically relevant Mars-analogue sedimentary field site with remote mission operations conducted at the University of Western Ontario, Canada; the mission aim was to inform on best practices and optimal approaches for sample acquisition modeled on the Mars 2020 rover mission. The daily operational procedures of the CanMars Science Team were modeled on those of current missions (i.e., Mars Science Laboratory tactical operations), serving as a study of known operational workflows and as a testbed for new approaches. This paper reports on the operational results of CanMars with best-practice recommendations. CanMars was designed as a Mars 2020 mock mission and thus carried similar science objectives; these included (1) advancing the understanding of the habitability potential of a subaqueous sedimentary environment through identifying, characterizing, and caching drilled samples containing high organic carbon (as a proxy for preserved ancient biosignatures) and (2) advancing the understanding of the history of water at the site. The in situ science investigations needed to address these science objectives were guided by the Mars Exploration Program Analysis Group goals. Effective and efficient Science Team operational procedures were developed – and many lessons were documented – through daily tactical planning and science investigations employed to meet the sample acquisition goals. In addition to the documentation of the CanMars operational procedures, this paper provides a brief summary of the science results from CanMars with a focus on recommendations for future analogue missions and planetary sample return flight missions, providing specific value to operational procedures for the Mars 2020 rover mission

    The CanMars Mars Sample Return analogue mission

    No full text
    The return of samples from known locations on Mars is among the highest priority goals of the international planetary science community. A possible scenario for Mars Sample Return (MSR) is a series of 3 missions: sample cache, fetch, and retrieval. The NASA Mars 2020 mission represents the first cache mission and was the focus of the CanMars analogue mission described in this paper. The major objectives for CanMars included comparing the accuracy of selecting samples remotely using rover data versus a traditional human field party, testing the efficiency of remote science operations with periodic pre-planned strategic observations (Strategic Traverse Days), assessing the utility of realistic autonomous science capabilities to the remote science team, and investigating the factors that affect the quality of sample selection decision-making in light of returned sample analysis. CanMars was conducted over two weeks in November 2015 and continued over three weeks in October and November 2016 at an analogue site near Hanksville, Utah, USA, that was unknown to the Mission Control Team located at the University of Western Ontario (Western) in London, Ontario, Canada. This operations architecture for CanMars was based on the Phoenix and Mars Exploration Rover missions together with previous analogue missions led by Western with the Mission Control Team being divided into Planning and Science sub-teams. In advance of the 2015 operations, the Science Team used satellite data, chosen to mimic datasets available from Mars-orbiting instruments, to produce a predictive geological map for the landing ellipse and a set of hypotheses for the geology and astrobiological potential of the landing site. The site was proposed to consist of a series of weakly cemented multi-coloured sedimentary rocks comprising carbonates, sulfates, and clays, and sinuous ridges with a resistant capping unit, interpreted as inverted paleochannels. Both the 2015 CanMars mission, which achieved 11 sols of operations, and the first part of the 2016 mission (sols 12–21), were conducted with the Mars Exploration Science Rover (MESR) and a series of integrated and hand-held instruments designed to mimic the payload of the Mars 2020 rover. Part 2 of the 2016 campaign (sols 22–39) was implemented without the MESR rover and was conducted exclusively by the field team as a Fast Motion Field Test (FMFT) with hand-carried instruments and with the equivalent of three sols of operations being executed in a single actual day. A total of 8 samples were cached during the 39 sols from which the Science Team prioritized 3 for “return to Earth”. Various science autonomy capabilities, based on flight-proven or near-future techniques intended for actual rover missions, were tested throughout the 2016 CanMars activities, with autonomous geological classification and targeting and autonomous pointing refinement being used extensively during the FMFT. Blind targeting, contingency sequencing, and conditional sequencing were also employed. Validation of the CanMars cache mission was achieved through various methods and approaches. The use of dedicated documentarians in mission control provided a detailed record of how and why decisions were made. Multiple separate field validation exercises employing humans using traditional geological techniques were carried out. All 8 of the selected samples plus a range of samples from the landing site region, collected out-of-simulation, have been analysed using a range of laboratory analytical techniques. A variety of lessons learned for both future analogue missions and planetary exploration missions are provided, including: dynamic collaboration between the science and planning teams as being key for mission success; the more frequent use of spectrometers and micro-imagers having remote capabilities rather than contact instruments; the utility of strategic traverse days to provide additional time for scientific discussion and meaningful interpretation of the data; the benefit of walkabout traverse strategies along with multi-sol plans with complex decisions trees to acquire a large amount of contextual data; and the availability of autonomous geological targeting, which enabled complex multi-sol plans gathering large suites of geological and geochemical survey data. Finally, the CanMars MSR activity demonstrated the utility of analogue missions in providing opportunities to engage and educate children and the public, by providing tangible hands-on linkages between current robotic missions and future human space missions. Public education and outreach was a priority for CanMars and a dedicated lead coordinated a strong presence on social media (primarily Twitter and Facebook), articles in local, regional, and national news networks, and interaction with the local community in London, Ontario. A further core objective of CanMars was to provide valuable learning opportunities to students and post-doctoral fellows in preparation for future planetary exploration missions. A learning goals survey conducted at the end of the 2016 activities had 90% of participants “somewhat agreeing” or “strongly agreeing” that participation in the mission has helped them to increase their understanding of the four learning outcomes
    corecore