3 research outputs found

    Deep learning for multi-view ultrasonic image fusion

    Get PDF
    Ultrasonic imaging is being used to obtain information about the acoustic properties of a medium by emitting waves into it and recording their interaction using ultrasonic transducer arrays. The Delay-And-Sum (DAS) algorithm forms images using the main path on which reflected signals travel back to the transducers. In some applications, different insonification paths can be considered, for instance by placing the transducers at different locations or if strong reflectors inside the medium are known a-priori. These different modes give rise to multiple DAS images reflecting different geometric information about the scatterers and the challenge is to either fuse them into one image or to directly extract higher-level information regarding the materials of the medium, e.g., a segmentation map. Traditional image fusion techniques typically use ad-hoc combinations of predefined image transforms, pooling operations and thresholding. In this work, we propose a deep neural network (DNN) architecture that directly maps all available data to a segmentation map while explicitly incorporating the DAS image formation for the different insonification paths as network layers. This enables information flow between data pre-processing and image post-processing DNNs, trained end-to-end. We compare our proposed method to a traditional image fusion technique using simulated data experiments, mimicking a non-destructive testing application with four image modes, i.e., two transducer locations and two internal reflection boundaries. Using our approach, it is possible to obtain much more accurate segmentation of defects

    Single plane-wave imaging using physics-based deep learning

    Get PDF
    In plane-wave imaging, multiple unfocused ultrasound waves are transmitted into a medium of interest from different angles and an image is formed from the recorded reflections. The number of plane waves used leads to a tradeoff between frame-rate and image quality, with single-plane-wave (SPW) imaging being the fastest possible modality with the worst image quality. Recently, deep learning methods have been proposed to improve ultrasound imaging. One approach is to use image-to-image networks that work on the formed image and another is to directly learn a mapping from data to an image. Both approaches utilize purely data-driven models and require deep, expressive network architectures, combined with large numbers of training samples to obtain good results. Here, we propose a data-to-image architecture that incorporates a wave-physics-based image formation algorithm in-between deep convolutional neural networks. To achieve this, we implement the Fourier (FK) migration method as network layers and train the whole network end-to-end. We compare our proposed data-to-image network with an image-to-image network in simulated data experiments, mimicking a medical ultrasound application. Experiments show that it is possible to obtain high-quality SPW images, almost similar to an image formed using 75 plane waves over an angular range of ±16°. This illustrates the great potential of combining deep neural networks with physics-based image formation algorithms for SPW imaging

    Fast ultrasonic imaging using end-to-end deep learning

    Get PDF
    Ultrasonic imaging algorithms used in many clinical and industrial applications consist of three steps: A data pre-processing, an image formation and an image post-processing step. For efficiency, image formation often relies on an approximation of the underlying wave physics. A prominent example is the Delay-And-Sum (DAS) algorithm used in reflectivity-based ultrasonic imaging. Recently, deep neural networks (DNNs) are being used for the data pre-processing and the image postprocessing steps separately. In this work, we propose a novel deep learning architecture that integrates all three steps to enable end-to-end trai
    corecore