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Abstract—Ultrasonic imaging algorithms used in many clinical
and industrial applications consist of three steps: A data pre-
processing, an image formation and an image post-processing
step. For efficiency, image formation often relies on an approx-
imation of the underlying wave physics. A prominent example
is the Delay-And-Sum (DAS) algorithm used in reflectivity-based
ultrasonic imaging. Recently, deep neural networks (DNNs) are
being used for the data pre-processing and the image post-
processing steps separately. In this work, we propose a novel deep
learning architecture that integrates all three steps to enable end-
to-end training. We examine turning the DAS image formation
method into a network layer that connects data pre-processing
layers with image post-processing layers that perform segmen-
tation. We demonstrate that this integrated approach clearly
outperforms sequential approaches that are trained separately.
While network training and evaluation is performed only on
simulated data, we also showcase the potential of our approach
on real data from a non-destructive testing scenario.

Index Terms—deep learning, end-to-end training, Delay-And-
Sum, fast ultrasonic imaging, approximate inversion.

I. INTRODUCTION

Ultrasonic imaging aims at generating maps of the acoustic
properties of a medium of interest. It has certain advantages
over other imaging modalities such as magnetic resonance
imaging (MRI) or computed tomography (CT): it uses non-
ionizing radiation, it is mobile, has low operating costs and
enables real-time imaging [1]. Nevertheless, the compromise
in achieving fast and interactive imaging is that the resulting
images require substantial human expertise for their interpre-
tation and differentiating between materials is not trivial.

Typical workflows for 2D ultrasonic imaging with linear
arrays consist of three steps: (1) data pre-processing (e.g.
denoising, filtering, deconvolution), (2) image formation via
beamforming and (3) image post-processing (e.g. image en-
hancement or segmentation). However, this three-step process
introduces data/reconstruction errors which propagate due to
inaccurate physics modelling or noise in the data.

Recently, there have been efforts to implement these steps
with deep learning [2]. Deep neural networks (DNNs) use raw
data as input and output an image [3] - [6]. The final goal is
not usually to produce an image but rather it is an intermediate
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Fig. 1: A phased-array with source/receive elements (r) de-
picted as black rectangles. For each image point, pi, and each
source/receiver combination, travel times are calculated.

step before image enhancement or segmentation. Further work
utilizes two decoders to obtain a beamformed image and a
segmentation from one encoder using raw data [7]. Nonethe-
less, integrating the image formation, which approximates the
underlying wave physics, within the deep learning architecture
has shown to improve final results [8] [9].

In this work, we propose to integrate all three steps together
to enable end-to-end training. To achieve this, we propose
a novel architecture that utilizes a fast ultrasonic imaging
operator, the Delay-And-Sum (DAS). We examine turning the
DAS image formation into a network layer that connects data
pre-processing and image post-processing DNNs. Using this,
we propose an end-to-end training strategy to obtain improved
results. In section 2, we describe the ultrasonic data acquisition
and the DAS image formation. Then, in section 3, we introduce
our proposed end-to-end deep learning approach and in section
4, we demonstrate that our integrated approach outperforms
sequential approaches which are trained independently using
simulated data. Finally, we apply this to real data showcasing
its potential to a non-destructive testing scenario.

II. ULTRASONIC IMAGING

We examine 2D data acquisition with a linear array as
shown in Figure 1. An element is used as a source, rm, and
transmits a pulsed ultrasonic wave into the medium of interest.
All receivers capture the resulting wave field, which contains
information about the wave-matter interactions, e.g. via reflec-
tions from interfaces with different acoustic properties. The
data acquisition continues with the next element as a source
and so on until all elements have acted as sources [10], [11].
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Fig. 2: A 3D DCNN, Dθ, is used for data pre-processing and the DAS operator, B, incorporates the image formation into
the whole network. A 2D DCNN, Iφ, post-processes the intermediate image and produces the final result. Feature maps are
followed by Group Norm and ReLU (tanh is used at the last layer of Dθ). Only one filter at one location per layer is shown.

This is called Full Matrix Capture (FMC) and leads to a data
volume, f ∈ Rnt×ns×nr , where nt, ns and nr are the number
of time samples, sources and receivers respectively. The aim
is to obtain an image, u ∈ Rnx×nz , where nx and nz are the
number of pixels in the horizontal and vertical direction.

Delay-And-Sum image formation
Delay-And-Sum (DAS) relies on an approximation of

the underlying wave physics. It calculates travel times,
τ(pi, rm, rl), between each source, rm, each image point,
pi = [xi, zi]

T and each receiver, rl, assuming a uniform speed
of sound in the material, s. This is calculated by,

τ(pi, rm, rl) =
‖rm − pi‖2

s
+
‖rl − pi‖2

s
, (1)

and depicted in Figure 1. Each travel time is converted into
an index using the sampling frequency which is used to locate
a sample. This time-shift operation corresponds to the delay
part. The amplitude is extracted at that time-shifted location,
and the process is repeated for all travel times corresponding
to an image point. Finally, it sums all amplitudes giving image
amplitude, ui, for image point, pi. This can be written as,

ui =

ns∑
m=0

nr∑
l=0

f(τ(pi, rm, rl),m, l), (2)

and repeated for all image points to form an image. We can
write it as a linear operator, B : Rnt×ns×nr → Rnx×nz , and
referred as DAS operator. The whole process is written as,

u = Bf . (3)

Note that the true mapping from acoustic properties to data
is non-linear and includes a lot of different, complicated wave-
matter interactions. On the other hand, the DAS algorithm

corresponds to a linear back-projection-type operator that tries
to form an approximate, qualitative image of acoustic property
variations in space. Due to this approximation, it is usually
preceded by data pre-processing and followed by image post-
processing. These individual steps are increasingly being re-
placed by deep convolutional neural networks (DCNNs) [2].

III. END-TO-END DEEP LEARNING

DCNNs are parameterized non-linear mappings optimized
for a given loss function. In this work, we propose a novel
architecture, as shown in Figure 2. The architecture involves a
3D DCNN, which is a data-to-data mapping Dθ, acting on
the data volume. Then, we incorporate the DAS operator,
B, into the network, by implementing a layer that applies
the DAS algorithm on the data. For this, we also need to
allow backpropagation of errors during training by deriving
and implementing its adjoint action. Finally, the intermediate
image formed is processed by a 2D DCNN, which is an image-
to-image mapping Iφ, to obtain a segmented image. This
enables end-to-end training of DCNN parameters θ and φ
simultaneously. Both DCNNs have 4 layers with 4 filters, each
with 5× 5× 5 and 5× 5 dimensions. Weight Standardization
[12] and Group Normalization [13] is used per layer to help
training stability since we use one training sample per mini-
batch. Furthermore, skip connections in Dθ enable better
information flow and reduce training time [14].

A. Training strategies

We will examine two sequential training strategies and intro-
duce our proposed end-to-end approach. To facilitate discus-
sion, we define c(i) as the ground truth segmentation, f (i) as
clean simulated data, f (i)ε as noisy, undersampled data and u(i)
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Fig. 3: (a) Target segmentation (white: air, black: carbon steel), (b) DAS image from fully-sampled data, (c) DAS image from
noisy and under-sampled data, (d)-(f) segmentation result of 1st/2nd/3rd training strategy from noisy and under-sampled data.

as the DAS image from f (i) using equation 3. The superscript i
represents the i-th training sample from a collection of training
data, {c(i), f (i), f (i)ε ,u(i)}Ni=1. All training strategies use the
same loss function for image post-processing, namely the cross
entropy loss referred to as H hereafter. The strategies are:

1st training strategy: Data pre-processing DCNN, Dθ, is
trained and fixed. The DAS operator, B, is applied to pre-
processed data to form images. Then, image post-processing
DCNN, Iφ, is trained using these images. That is,

1) train θ̂ := argmin
θ

∑N
i=1 ‖f (i) −Dθ(f

(i)
ε )‖22

2) compute û(i) := BDθ̂(f
(i)
ε )

3) train φ̂ := argmin
φ

∑N
i=1H(c(i), Iφ(û(i)))

2nd training strategy: Data pre-processing DCNN, Dθ, and
DAS operator, B, are trained together. Then, image post-
processing DCNN, Iφ, is trained. That is,

1) train θ̂ := argmin
θ

∑N
i=1 ‖u(i) − BDθ(f

(i)
ε )‖22

2) compute û(i) := BDθ̂(f
(i)
ε )

3) train φ̂ := argmin
φ

∑N
i=1H(c(i), Iφ(û(i)))

3rd training strategy: All three steps are combined and
trained together in an end-to-end way as proposed. That is,

1) train (φ̂, θ̂) := argmin
(φ,θ)

∑N
i=1H(c(i), Iφ(BDθ(f

(i)
ε )))

For the 2nd and 3rd strategies, we initialize the DCNNs with
the parameters learnt by 1st and 2nd strategies respectively.

IV. EXPERIMENTS

To evaluate our proposed approach, we use an ultrasonic-
based non-destructive inspection of pipelines for defects.

A. Simulated data

The data domain was set to 64×64×1020 with 64 elements,
1020 time samples and sampling frequency of 50MHz. The
image domain was set to 72×354 pixels with defects randomly
located around the middle of the domain. This was then
cropped to 72 × 118, as used in the real data acquired. As
a proof of concept, we set the number of materials to 2. The
segmented image consists of 0 or 1 which corresponds to the
speed of sound of each material.

Figure 3(a) includes an example of a speed of sound map.
The pipeline was modelled as carbon steel (s = 5920m/s)
and the defects and pipe wall as air (s = 343m/s). We
simulated ultrasonic data with k-Wave [15] and used them
as input for training. The respective speed of sound maps
were used as targets. Each simulation took approximately 5
minutes to run on an NVIDIA Geforce GTX 970. We limited
the generation to only 230 scenarios (training data: 180, test
data: 50) where we randomly varied the number and location
of defects in a pipeline. To increase difficulty, we added noise
and under-sampled sources by a factor of two. An example
of a DAS image using clean, fully-sampled data is shown in
Figure 3(b). The defects are correctly located but there are side
lobes present due to the limited spatial coverage of the linear
array. Figure 3(c) includes the DAS image from noisy, under-
sampled data. In this case, it is more challenging to localize
the defects in the ultrasonic image.

We use the noisy and under-sampled data to evaluate the
three training strategies introduced in the previous section. All
strategies are implemented in PyTorch, and DCNN parameters
are optimized using the Adam optimization [16] with a learn-
ing rate of 10−3. The average cross entropy (lower is better)
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Fig. 4: (a) Picture of a carbon steel block, (b) segmentation
result of proposed end-to-end deep learning approach.

of each strategy on the test set is: 3.4 × 10−3, 6.7 × 10−4

and 1.2× 10−4 each. A visual comparison is given in Figure
3(d), 3(e) and 3(f) where the segmented images obtained by
each strategy are shown. These results demonstrate that the
proposed end-to-end integration of the DAS operator with both
data pre-processing and image post-processing steps leads to
a substantial improvement of the final segmentation result.

B. Real data

To further validate our proposed approach, we acquired real
ultrasonic data using a carbon steel block with three holes. A
picture can be seen in Figure 4(a). We used the data acquired
(half of the sources) as input and estimated a segmented image.
The spatial extent of the defects is underestimated since we
did not take into account the temporal impulse response of
the receivers during training data simulation. Nevertheless, we
obtain an accurate localization and separation of the defects
as seen in Figure 4(b). Our end-to-end deep learning approach
was trained only on simulated data but it was able to transfer
the learnt representations to more challenging real data.

V. CONCLUSIONS

Deep learning can be integrated into existing ultrasonic
imaging workflows and replace traditional data pre-processing
and image post-processing steps with success. Nevertheless,
there are various architectures and strategies for training deep
neural networks. In this work, we proposed an end-to-end
approach that integrates the image formation into the network
architecture. This results in a single network that maps raw
data to desired imaging result. We demonstrated this concept
for the DAS image formation and for segmentation as an image
post-processing task. To increase difficulty, we sub-sampled
the noisy data by half, which could be used to speed up

the data acquisition in real-world applications. Experiments
have shown that end-to-end training produces better segmented
images as opposed to training for each task separately. Even
though the final cost function is the same, sub-optimal results
are obtained when training steps sequentially. This is because
we fix the parameters of the data pre-processing network and
only optimize the parameters of the image post-processing
network. On the other hand, end-to-end training is more
flexible since it optimizes the parameters of both networks
simultaneously. It is initialized with the learnt network param-
eters of the sequential approach and can only improve upon
those. Furthermore, training was performed only on simulated
data, but the proposed approach was successful on real data
illustrating the potential of deep learning to learn from physics
simulations to solve real-world ultrasonic inverse problems.
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