152 research outputs found

    Iterative Method to Derive the Equivalent Centrifugal Compressor Performance at Various Operating Conditions: Part I: Modelling of Suction Parameters Impact

    Get PDF
    This paper introduces a new iterative method to predict the equivalent centrifugal compressor performance at various operating conditions. The presented theoretical analysis and empirical correlations provide a novel approach to derive the entire compressor map corresponding to various suction conditions without a prior knowledge of the detailed geometry. The efficiency model was derived to reflect the impact of physical gas properties, Mach number, and flow and work coefficients. One of the main features of the developed technique is the fact that it considers the variation in the gas properties and stage efficiency which makes it appropriate with hydrocarbons. This method has been tested to predict the performance of two multistage centrifugal compressors and the estimated characteristics are compared with the measured data. The carried comparison revealed a good matching with the actual values, including the stable operation region limits. Furthermore, an optimization study was conducted to investigate the influences of suction conditions on the stage efficiency and surge margin. Moreover, a new sort of presentation has been generated to obtain the equivalent performance characteristics for a constant discharge pressure operation at variable suction pressure and temperature working conditions. A further validation is included in part two of this study in order to evaluate the prediction capability of the derived model at various gas compositions

    An Iterative Method to Derive the Equivalent Centrifugal Compressor Performance at Various Operating Conditions: Part II: Modeling of Gas Properties Impact

    Get PDF
    This is the second part of a study conducted to model the aerothermodynamic impact of suction parameters and gas properties on a multi-stage centrifugal compressor’s performance. A new iterative method has been developed in the first part to derive the equivalent performance at various operating conditions. This approach has been validated to predict the compressor map at different suction pressures and temperatures using the design characteristics as reference values. A further case is included in this paper in order to emphasize the validity of the developed approach to obtain the performance characteristics at various gas compositions. The provided example shows that the performance parameters at different gas mixtures can be predicted to within ±1.34%. Furthermore, the conducted optimization in this paper reveals that the proposed method can be applied for the compressor design evaluation corresponding to the expected variation in suction conditions. Moreover, the examined case study demonstrates the effect of gas properties’ variation on the operating point and aerodynamic stability of the entire compression system. In order to achieve that, a simple approach has been established to assess the contribution of gas properties’ variation to the inefficient and unstable compressor performance based on the available operational data

    Digital simulation of gas turbine performance

    Get PDF
    No abstract available

    Engineering management of gas turbine power plant co2 for microalgae biofuel production

    Get PDF
    Fossil fuel accounts for over 80% of the world`s primary energy, particularly in areas of transportation, manufacturing and domestic heating. However, depletion of fossil reserves, frequent threats to the security of fossil fuel supply, coupled with concerns over emissions of greenhouse gases associated with fossil fuel use has motivated research towards developing renewable and sustainable sources for energy fuels. Consequently, the use of microalgae culture to convert CO2 from power plants flue gases into biomass that are readily converted into biofuel offers a window of opportunities to enhance, compliment or replace fossil- fuel-use. Interest in the use of microalgae biomass for biofuel production is high as it affords the potential for power plant CO2 sequestration – (1kg of dry algae biomass uses about 1.83kg CO2). Similarly, its capacity to utilise nutrients from a variety of wastewater, sets it apart from other biomass resources. These outlined benefits all emphasis the need for extended R&D efforts to advance commercial microalgae biofuel production. The paper is aimed at investigating the environmental performance of the microalgae biofuel production process using LCA

    TERA- A Tool for Aero-engine Modelling and Management

    Get PDF
    One of the distinguishing features of the civil aero-engine market is its high competitiveness. The costs and risks associated with new projects are such that the difference between two apparently equally attractive options could result in success from one and a threat to the survival of the company from the other. To conceive and assess engines with minimum global warming impact and lowest cost of ownership in a variety of emission legislation scenarios, emissions taxation policies, fiscal and Air Traffic Management environments, a Techno-economic and Environmental Risk Assessment (TERA) model is needed. TERA incorporates multi-disciplinary modules for modelling gas turbine and aircraft performance, estimation of engine weight, noise and emissions as well as environment impact and operating economics. The TERA software is integrated with a commercial optimiser and provides a means for cycle studies. It is to be expected that new legislative and fiscal constraints on air travel will demand an extension to the customary range of asset management parameters. In such a business environment there is potential for TERA to develop into a useful tool for aircraft and engine asset management. This paper presents a description of this tool as well as gives some results from scenario studies

    Energetic and exergetic analysis of combined cycle power plant: Part-1 operation and performance

    Get PDF
    Energetic and exergetic analyses are conducted using operating data for Sabiya, a combined cycle power plant (CCPP) with an advanced triple pressure reheat heat recovery steam generator (HRSG). Furthermore, a sensitivity analysis is carried out on the HRSG using a recent approach to differentiate between the sources of irreversibility. The proposed system was modelled using the IPSEpro software and further validated by the manufacturer’s data. The performance of the Sabiya CCPP was examined for different climatic conditions, pressure ratios, pinch point temperatures, high-pressure steam, and condenser pressure values. The results confirmed that 60.9% of the total exergy destruction occurs in the combustion chamber, which constitutes the main source of irreversibilities within a system. The exergy destruction was significantly affected by both the pressure ratio and the high-pressure steam, where the relation between them was seen to be inversely proportional. The high-pressure stage contributes about 50% of the exergy destruction within the HRSG compared to other stages and the reheat system, due to the high temperature difference between the streams and the large number of components, which leads to high energy loss to the surroundings. Numerous possibilities for improving the CCPP’s performance are introduced, based on the obtained results

    A dynamic convergence control scheme for the solution of the radial equilibrium equation in through-flow analyses

    Get PDF
    One of the most frequently encountered numerical problems in scientific analyses is the solution of non-linear equations. Often the analysis of complex phenomena falls beyond the range of applicability of the numerical methods available in the public domain, and demands the design of dedicated algorithms that will approximate, to a specified precision, the mathematical solution of specific problems. These algorithms can be developed from scratch or through the amalgamation of existing techniques. The accurate solution of the full radial equilibrium equation (REE) in streamline curvature (SLC) through-flow analyses presents such a case. This article discusses the development, validation, and application of an 'intelligent' dynamic convergence control (DCC) algorithm for the fast, accurate, and robust numerical solution of the non-linear equations of motion for two-dimensional flow fields. The algorithm was developed to eliminate the large extent of user intervention, usually required by standard numerical methods. The DCC algorithm was integrated into a turbomachinery design and performance simulation software tool and was tested rigorously, particularly at compressor operating regimes traditionally exhibiting convergence difficulties (i.e. far off-design conditions). Typical error histories and comparisons of simulated results against experimental are presented in this article for a particular case study. For all case studies examined, it was found that the algorithm could successfully 'guide' the solution down to the specified error tolerance, at the expense of a slightly slower iteration process (compared to a conventional Newton-Raphson scheme). This hybrid DCC algorithm can also find use in many other engineering and scientific applications that require the robust solution of mathematical problems by numerical instead of analytical means

    Exergetic, exergoeconomic and exergoenvironmental analysis of intercooled gas turbine engine

    Get PDF
    Exergetic and exergoeconomic and exergoenvironmental analyses have been performed for an advanced aero-derivative intercooled gas turbine engine. The proposed system was modelled using the IPSEpro software package and validated using manufacturer’s published data. The exergoeconomic model evaluates the cost-effectiveness of the gas turbine engine based on the Specific Exergy Costing [SPECO] method. The CO2 emissions per KWh were estimated using a generic combustor model, HEPHAESTUS, developed at Cranfield University. It is well known that the exergetic analysis can determine the magnitudes, locations and types of losses within an energy system. The effect of load and ambient temperature variations on gas turbine performance were investigated for two different configurations. The first system, Case-I, was a simple gas turbine (SCGT) engine, and the second, Case-II, an intercooling gas turbine (ICGT) system. The latter enhances gas turbine efficiency but, at the same time, has an adverse effect on the combustion chamber due to reduced compressed air temperature. It was confirmed that full load and low ambient temperature are preferable due to the low waste exergy. The unit exergy cost rate for both SCGT and ICGT have been calculated as 8.59 and 8.32 US$/GJ respectively. The exergoenvironmental results show the ICGT achieved lower emission levels and is more environmentally friendly than the SCGT

    A Fatigue Life Assessment Methodology for Rolling-Element Bearing Under Irregular Loading

    Get PDF
    The paper presents a methodology for estimating the fatigue life of rolling-element bearing under irregular loading conditions. This method overcomes the limitations encountered by rolling-element bearing lifing models based on a constant bearing load assumption, when used in applications where bearing load varies over time with also changes in rotational speed. To include these irregular loading effects, a load-slice averaging methodology is applied to the loading history; in which the loading history is assumed to be composed of many thin slices of loading conditions. The operating conditions within each loading slice are averaged, and with the aid of linear damage rule and Lundberg-Palmgren load-life correlation for rolling-element bearings, each loading slice fatigue damage contribution is determined. The cumulative loading slice fatigue damage is used to estimate rolling-element bearing life. This approach can also be used as a tool for real-time life prognosis of rolling-element bearings. The method is demonstrated with simulated loading histories acting on a Cooper split cylindrical roller bearing and life prediction comparison is made between several approximate closed form bearing life expressions for different types of loading.Peer reviewedFinal Published versio

    Effect of steam addition on the flow field and NOx emissions for Jet-A in an aircraft combustor

    Get PDF
    The steam injection technology for aircraft engines is gaining rising importance because of the strong limitations imposed by the legislation for NOx reduction in airports. In order to investigate the impact of steam addition on combustion and NOx emissions, an integrated performance-CFD-chemical reactor network (CRN) methodology was developed. The CFD results showed steam addition reduced the high temperature size and the radical pool moved downstream. Then different post-processing techniques are employed and CRN is generated to predict NOx emissions. This network consists of 14 chemical reactor elements and the results were in close agreement with the ICAO databank. The established CRN model was then used for steam addition study and the results showed under air/steam mixture atmosphere, high steam content could push the NOx formation region to the post-flame zone and a large amount of the NOx emission could be reduced when the steam mass fraction is quite high
    • …
    corecore