21 research outputs found

    Conserve the eco-evolutionary dynamic, not the subspecies:Phenological divergence and gene flow between temporal cohorts of Euphilotes ancilla endemic to southern Nevada

    Get PDF
    Euphilotes ancilla purpura and cryptica (Lycaenidae), butterflies endemic to the Spring Mountains (Clark Co., Nevada), have been described as two univoltine, temporally isolated, sympatric taxa that utilize different early- and late-flowering larval host plant varieties (Eriogonum umbellatum). However, our results from field and laboratory indicate that this is not the case. The subspecies overlap in timing of adult reproductive flight (compilation of field records 1977 to 2018) and laboratory emergence of adults from early-season, non-diapause pupae indicate butterflies are not univoltine. Genetic samples collected from putative E. a. purpura (Early cohort) and cryptica (Late cohort) subpopulations show no evidence of genetic structure indicative of allochronic isolation in phylogenies of 26 mitochondrial DNA COI haplotypes and 18 nuclear ITS1 alleles. Analysis of molecular variance revealed 89% of mitochondrial DNA variation structured within and among subpopulations, with only 11% between the purportedly isolated subspecies. Analysis of isolation and migration indicated gene flow from the Early to Late cohort was 3 × greater than in the opposite direction. We conclude that, rather than two separate subspecies, Euphilotes ancilla exists in a network of partially interconnected subpopulations extending from 1750 to 3000 m across much of the Spring Mountains. Gene flow is related to the timing of adult flight and host plant flowering, contributing to the genetic variation in phenology necessary for evolutionary tracking of shifting flowering periods of larval host plants. Maintenance of connectivity and gene flow across the Spring Mountains is therefore essential for population persistence of both cohorts in the face of environmental change

    High Pressure Aqueous Geochemical NMR

    No full text

    On the Conversion of Bauxite Ores to Highly Activated Alumina Media for Water Remediation

    No full text
    Good quality drinking water is necessary to maintain a high quality of life. Millions lack access to clean and safe drinking water, and current trends suggest that billions will face acute water shortages in the coming decades. Development of new materials has led to technological impacts on water purification, from desalination membranes to atmospheric water scavenging. However, the most challenging aspect of technological solutions is cost: if the community being serviced cannot afford the solution, it is not likely to be sustainable. Repurposing Earth-abundant materials to replace highly engineered solutions is an atractive solution. Herein, minimal processing of bauxite rocks produces a high-porosity and reactive activated alumina in situ, without purification directly from the ore. This acid-treated, thermally activated bauxite (ATAB) exhibits a high surface area of 401 ± 6 m2 g−1, a 40-fold increase relative to its parent ore, and a 2× increase relative to the state-of-the-art fluoride adsorbent, activated alumina. The composition, preparation, and mechanism of adsorption are studied by X-ray diffraction, X-ray photoelectron spectroscopy, and multiple-quantum magic-angle spinning 27Al nuclear magnetic resonance (NMR). The maximum adsorption density of ATAB is comparable with that of activated alumina, but ATAB requires fewer processing steps, thus warranting future consideration as a primary adsorbent of choice for fluoride removal from water

    Kinetic Study of Paper Waste Thermal Degradation

    No full text
    Paper waste generation has been rising in the past decades, with a large amount being landfilled. These paper wastes can be great energy sources after thermal treatment since they are considered carbon neutral. These wastes contain mainly cellulose, hemicellulose, lignin, and some minerals. The thermal decomposition of cellulose, hemicellulose, and lignin have been extensively studied, however, the knowledge of thermal degradation of paper wastes at lower temperatures, which are more practical for industrial applications are still lacking. In this study, paper wastes have been characterized and thermogravimetric analyses were performed from 200°C to 400°C and the char produced were analyzed by nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. Two kinetic approaches were taken while developing the kinetic model of paper waste thermal degradation: (i) reconstructing the TGA results of paper waste thermal degradation by an additive law of the degradation of cellulose, hemicellulose and lignin; (ii) considering paper waste as one material and develop a multi-step consecutive reaction mechanism that focuses on solid products at different temperatures. It was observed that there are potential interactions between cellulose, hemicellulose and lignin during paper waste degradation. Therefore, the second approach was concluded to be more plausible, and one set of kinetic parameters were determined according to the experimental results at different temperatures. These results provided insights into the degradation kinetic mechanism and solid product distribution of the paper waste. It was found that the first reaction was due to dehydration of cellulose and the 6th and 7th reaction can be attributed to the thermal degradation of lignin. The NMR and FTIR results also validated that the cellulose started degrading at lower temperatures, and lignin degradation became more pronounced at higher temperatures
    corecore