124 research outputs found

    Epilysin (matrix metalloproteinase-28) contributes to airway epithelial cell survival

    Get PDF
    MMP28 is constitutively expressed by epithelial cells in many tissues, including the respiratory epithelium in the lung and keratinocytes in the skin. This constitutive expression suggests that MMP28 may serve a role in epithelial cell homeostasis. In an effort to determine its function in epithelial cell biology, we generated cell lines expressing wild-type or catalytically-inactive mutant MMP28 in two pulmonary epithelial cell lines, A549 and BEAS-2B. We observed that over-expression of MMP28 provided protection against apoptosis induced by either serum-deprivation or treatment with a protein kinase inhibitor, staurosporine. Furthermore, we observed increased caspase-3/7 activity in influenza-infected lungs from Mmp28-/- mice compared to wild-type mice, and this activity localized to the airway epithelium but was not associated with a change in viral load. Thus, we have identified a novel role of MMP28 in promoting epithelial cell survival in the lung

    Adrenal function recovery after durable oral corticosteroid sparing with benralizumab in the PONENTE study

    Get PDF
    Background Oral corticosteroid (OCS) dependence among patients with severe eosinophilic asthma can cause adverse outcomes, including adrenal insufficiency. PONENTE's OCS reduction phase showed that, following benralizumab initiation, 91.5% of patients eliminated corticosteroids or achieved a final dosage ≀5 mgΒ·day-1 (median (range) 0.0 (0.0-40.0) mg). Methods The maintenance phase assessed the durability of corticosteroid reduction and further adrenal function recovery. For ~6 months, patients continued benralizumab 30 mg every 8 weeks without corticosteroids or with the final dosage achieved during the reduction phase. Investigators could prescribe corticosteroids for asthma exacerbations or increase daily dosages for asthma control deteriorations. Outcomes included changes in daily OCS dosage, Asthma Control Questionnaire (ACQ)-6 and St George's Respiratory Questionnaire (SGRQ), as well as adrenal status, asthma exacerbations and adverse events. Results 598 patients entered PONENTE; 563 (94.1%) completed the reduction phase and entered the maintenance phase. From the end of reduction to the end of maintenance, the median (range) OCS dosage was unchanged (0.0 (0.0-40.0) mg), 3.2% (n=18/563) of patients experienced daily dosage increases, the mean ACQ-6 score decreased from 1.26 to 1.18 and 84.5% (n=476/563) of patients were exacerbation free. The mean SGRQ improvement (-19.65 points) from baseline to the end of maintenance indicated substantial quality-of-life improvements. Of patients entering the maintenance phase with adrenal insufficiency, 32.4% (n=104/321) demonstrated an improvement in adrenal function. Adverse events were consistent with previous reports. Conclusions Most patients successfully maintained maximal OCS reduction while achieving improved asthma control with few exacerbations and maintaining or recovering adrenal function

    T-cell Subset Regulation in Atopy

    Get PDF
    Presentation of processed allergen by antigen-presenting cells to T-helper (Th) lymphocytes, which is influenced costimulatory signals, cytokines, chemokines, and regulatory T cells (Tregs), determines the development of different types of T-cell immunity. The discovery of Tregs revolutionized the primary concepts of immune regulation interpreted within the framework of a binary Th1/Th2 paradigm. Tregs play a central role in the maintenance of peripheral homeostasis, the establishment of controlled immune responses, and the inhibition of allergen-specific effector cells. Recently, some other T-cell subsets appeared, including Th17 and Th9 cells, which control local tissue inflammation through upregulation of proinflammatory cytokines and chemokines. This review aims to discuss our understanding of the T-cell subset reciprocal interaction in atopy

    Sublingual grass pollen immunotherapy is associated with increases in sublingual Foxp3-expressing cells and elevated allergen-specific immunoglobulin G4, immunoglobulin A and serum inhibitory activity for immunoglobulin E-facilitated allergen binding to B cells

    No full text
    P>Background The mechanisms of sublingual immunotherapy (SLIT) are less well understood than those of subcutaneous immunotherapy (SCIT). Objectives To determine the effects of grass-pollen SLIT on oral mucosal immune cells, local regulatory cytokines, serum allergen-specific antibody subclasses and B cell IgE-facilitated allergen binding (IgE-FAB). Methods Biopsies from the sublingual mucosa of up to 14 SLIT-treated atopics, nine placebo-treated atopics and eight normal controls were examined for myeloid dendritic cells (mDCs) (CD1c), plasmacytoid dendritic cells (CD303), mast cells (AA1), T cells (CD3) and Foxp3 using immunofluorescence microscopy. IL-10 and TGF-beta mRNA expression were identified by in situ hybridization. Allergen-specific IgG and IgA subclasses and serum inhibitory activity for binding of allergen-IgE complexes to B cells (IgE-FAB) were measured before, during and on the completion of SLIT. Results Foxp3+ cells were increased in the oral epithelium of SLIT- vs. placebo-treated atopics (P=0.04). Greater numbers of subepithelial mDCs were present in placebo-treated, but not in SLIT-treated, atopics compared with normal controls (P=0.05). There were fewer subepithelial mast cells and greater epithelial T cells in SLIT- compared with placebo-treated atopics (P=0.1 for both). IgG(1) and IgG(4) were increased following SLIT (P < 0.001). Peak seasonal IgA(1) and IgA(2) were increased during SLIT (P < 0.05). There was a time-dependent increase in serum inhibitory activity for IgE-FAB in SLIT-treated atopics. Conclusions SLIT with grass pollen extract is associated with increased Foxp3+ cells in the sublingual epithelium and systemic humoral changes as observed previously for SCIT. Cite this as: G. W. Scadding, M. H. Shamji, M. R. Jacobson, D. I. Lee, D. Wilson, M. T. Lima, L. Pitkin, C. Pilette, K. Nouri-Aria and S. R. Durham, Clinical & Experimental Allergy, 2010 (40) 598-606

    Cellular sources and immune functions of interleukin-9

    No full text
    Interleukin-9 (IL-9) has attracted renewed interest owing to the identification of its expression by multiple T helper (T(H)) cell subsets, including T(H)2 cells, T(H)9 cells, T(H)17 cells and regulatory T (T(Reg)) cells. Here, we provide a broad overview of the conditions that are required for cells to produce IL-9 and describe the cellular targets and nature of the immune responses that are induced by IL-9
    • …
    corecore